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Preface 

In recent years it has become apparent that fuzzy systems provide 
useful tools for obtaining greater generality, higher expressive power, and 
more convenient concepts for modelling imprecision and uncertainty in 
many real world applications in order to achieve tractability and low cost 
realizations without affecting the overall quality of products. For this 
reason fuzzy systems have an increasing impact in the realms of artifi­
cial intelligence, information processing, diagnostics, intelligent control, 
optimization techniques, decision analysis, and related fields. New and 
active areas of research emerged, equipped with many practical appli­
cations and interesting theoretical problems that have not been solved 
yet. In this connection several German research projects and working 
groups in Computer science have been formed that focus on various top­
ics of fuzzy systems. Considering the need for a regular forum where the 
corresponding work can be discussed by specialists, the research group 
"Fuzzy Systems" was founded in October 1993 as a part of the German 
Society of Computer Science (GI). 
The first important activity of this group referred to the organization 
of the workshop "Fuzzy Systems - Management of Uncertain Informa­
tion" in Braunschweig (October 20-22, 1993) with about 120 attending 
participants. Invited speakers were Abe Mamdani, the founder of fuzzy 
control, and Didier Dubois, the designed World President of the Inter­
national Fuzzy Systems Association (IFSA). All major German research 
groups on fuzzy systems contributed to this workshop. 

In this book we want to address some essential topics that were dis­
cussed at the mentioned workshop. The whole presentation is organized 
as follows: 
The first paper gives an overview about the historical development of 
fuzzy systems in Germany. Then the book is partitioned into the five 
following chapters: 

• Fuzzy Control 

• Fuzzy Neuro Systems 

• Fuzzy Systems in AI 

• Theory of Fuzzy Systems 

• Fuzzy Classification 



Vi 

These chapters reflect basic trends and recent results in fuzzy systems 
methodology. The organization of each section is uniform: It starts with 
an authoritative introduction to the main issues of the respective field 
of research and applications, involving the actual state of the art. The 
preceeding papers in a section address recent deliver abIes and present 
new ideas regarding the improvement of fuzzy systems. 

Since theory and application of fuzzy systems is highly interactive 
in different fields, the material addresses practitioners and scientists in 
computer science as well as control engineering, the natural sciences, and 
mathematics. 

The editors wish to thank the authors who contributed their work to 
this book. We also express our gratitude to Reinald Klockenbusch from 
Vieweg Verlag for his support, and to our students Heiner Bunjes and 
Roland Stellmach for their excellent assistance in putting together the 
final manuscript. 

Rudolf Kruse 
Jorg Gebhardt 
Rainer Palm June, 1994. 
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1. Fuzzy Systems in Germany: 
Historical Remarks 

Hans-Jiirgen Zimmermann 

Fuzzy Set Theory was recognized by some scientists in Germany al­
ready at the beginning of the seventies. While control engineers in Great 
Britain developed the concept of a fuzzy controller and showed that it 
worked, on the Continent, research was more done in the mathemati­
cal areas and in particular in Operations Research where the first in­
stitutional working group (European working group of fuzzy sets) was 
established in 1976. In German universities research was predominantly 
in mathematical areas. At the Universities of Wuppertal and Mainz, 
for instance, research was performed in the areas of fuzzy topology and 
algebra while at the University of Braunschweig in the early eighties re­
search on fuzzy measures and the interface between classical statistics 
and fuzzy set theory was done. At the Institute of Technology in Aachen 
(Aix-Ia-Chapelle) empirical and axiomatic research went on at that time. 
In the Chair for Operations Research, empirical as well as axiomatic ba­
sic research concerning operators and membership functions was started 
in 1972. This research overlapped with the development of "fuzzy linear 
programming" and its applications to multi-criteria-analysis and vari­
ous other areas. 

Even though some applications, in particular, of fuzzy linear pro­
gramming can be found during these years, most of the activities in the 
area of fuzzy set theory were more or less in the academic field. Even 
here there were hardly any courses offered at that time. Classes in fuzzy 
set theory and its applications were offered on a regular basis since 1982 
only at the Aachen Institute of Technology. This was accompanied by 
quite a number of master and Ph.D. theses between the middle of the 
seventies and the middle of the eighties. In the middle of the eighties 
research work shifted from basic research and fuzzification of Operations 
Research Methods to the application of fuzzy sets to knowledge based 
systems. Focus at that time was still the area of fuzzy control. The shell 
that was developed at the Institute and which was available around 1989, 
was called "FIT" (Fuzzy and Intelligent Techniques). 

The scene changed drastically at the end of 1990, when one of the 
leading German Journals (highTech) published in two consecutive issues 
cover stories on "fuzzy logic". At the same time the German television 
broad casted in the "Computer Club" existing fuzzy products from Japan 
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(video camera, pattern recognition devises, etc.). In these publications 
and broadcasts, Aachen was mentioned as a place where people had been 
working in this area for quite a while. It is, therefore, not surprising that 
within the first two or three months of 1991 we received approx. 150 
requests for cooperation and help. Most of the requests described the 
problems for which they wanted to design a fuzzy solution quite well and 
about 70 % of those problems were really well suited for the applications 
of fuzzy technology. 

In May of 1991, the Journal that had published the first articles, 
started a road show, i.e. a series of introductionary seminars aimed at 
high management levels. These seminars took place in Munich, Stuttgart, 
Frankfurt, Dusseldorf and Aachen (within one week) and each of the sem­
inars had more than 60 participants. At the CeBit and the Industrial 
Fair in Hannover, the first exhibits of fuzzy technology attracted an un­
expected number of visitors which just wanted to know what that was, 
"fuzzy logic". Exhibited was a fuzzy car, i.e. a small model car with a 
top speed of 80 km/h that navigated without any external communica­
tion, just on the basis of a built in fuzzy knowledge based system, built 
at the Institute of Technology in Aachen. Also some presentations by 
Omron, a Japanese firm that tried to push fuzzy technology in Germany 
first. Still in 1991, the first fuzzy tool (Fuzzy Tech) was offered by IN­
FORM in Aachen. This had been possible because "FIT", as mentioned 
above, had already been completed and could quickly be changed into a 
commercial case tool which now ranges under the three first world-wide 
sales-wise. 

The increasing interest in the public sparked off interest in fuzzy 
technology in numerous German Universities and Institutes of Technol­
ogy as well as in small and large German companies. Siemens, for in­
stance, started a "Task Force fuzzy technology" and developed in coop­
eration with an American software-house and with German companies 
fuzzy software, fuzzy hardware and applications. In particular, numer­
ous Chairs for Control Engineering became interested in the Japanese 
applications for fuzzy control which seemed to be quite attractive. 

Four German professional societies (Computer Science, Operations 
Research, Electrical Engineering, Mechanical Engineering) started work­
ing groups; one of the societies even two, a theoretical and an applied 
one. These working groups already met several times in 1991, partly by 
organizing their group meetings as symposia on fuzzy technology. 

The governmental acceptance of this technology and the public fi­
nancial support failed, however, to develop. Most of the big German 
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companies started groups that began to develop fuzzy products, fuzzy 
tools or fuzzy methods, but it seemed to be very difficult for these com­
panies to cooperate on a pre-competitive level. An attempt to set up 
an European institution as counterpart to the LIFE Institute in Japan 
which was founded of 49 big Japanese companies, and to BISC (Berkeley 
Soft Computing Initiative) was started. This seemed to fail due to long 
decision making times in the enterprises and their missing willingness to 
any type of cooperation. It also became clear that the German magerial 
attitude differs significantly from the Japanese by being much more hesi­
tant in investing in new technologies before the success had been proven 
by competitors. This difference had already led in the eighties to the 
lead of Japanese companies in the fuzzy area. 

Two important and very positive exceptions, however, happened still 
in 1991: In December 1991, after a very short time of preparation, the 
Ministry of Economic Affairs of the State North Rhine Westphalia de­
cided to start the "Fuzzy Initiative North Rhine Westphalia" and at the 
same time the Europe an foundation ELITE (European Laboratory for 
Intelligent Techniques Engineer ing) could be founded in Aachen and 
started operation in January 1992. The Fuzzy Initiative North Rhine 
Westphalia is a project that carries almost 10 million Deutschmarks of 
financial support and aims primarily at technology transfer in the area of 
fuzzy technology. It also tries to provide help to potential customers or 
developers offuzzy products by supporting activities in a demonstration 
center (in Dortmund), a consultation center in Aachen, data banks for 
literature, patents and projects, by subsidizing seminars and the develop­
ment of fuzzy technology. The data bank for literature, projects, events, 
and suppliers of fuzzy products has, in the meantime, been turned into 
a commercial product and service (CITE) which is available worldwide, 
and ELITE is the prime proposer of quite a number of European Re­
search projects in the area of intelligent technologies and a host of several 
leading visiting scientists from around the world. It can be expected that 
Fuzzy technology will also play a major part in the Fourth Framework 
Programme of the European Community starting in 1995. 

The development in 1992 followed that of 1991, but already in a 
considerably larger scope. There were at least 20-30 seminars and sym­
posia which drew between 20 and 500 participants and which normally 
lasted between one and three days. On the three best-known indus­
trial fairs CeBit, InterKama and the Industrial Fair in Hannover, quite 
a number of fuzzy products were already shown. The German "Fuzzy 
Initiative North Rhine Westphalia" also became effective. In the mean-
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time it has established a scientific board, a technical board and, as the 
most important body, the "Fuzzy Club", which consists of approx. 500 
members that are invited to different types of events regularly and that 
are the most effective means of a fast technology transfer from the rather 
scarce "fuzzy resources" to those who can use them. Actively involved 
in the "Fuzzy Initiative North Rhine Westphalia" are also all Chambers 
of Commerce and Industry of the State of North Rhine Westphalia. Of 
particular interest seem to be the "Anwendertreffen". These are sym­
posia in which practitioners report about their new products and ex­
periences for the sake of other practitioners. These meetings normally 
last two days; there are about 20 presentations and the usual audience 
consists of more than 100 participants. In 1992 there were four to five 
of these symposia in Germany and in 1993 there were at least six to 
seven of these events scheduled in different locations. It can, however, 
be observed that the number of participants in these events is decreas­
ing. This is not necessarily an indication of decreasing interest in the 
fuzzy area, but to a certain extent an expression of consolidation. New 
products and developments cannot be generated that fast that several 
conferences per year can be filled with new and interesting applications 
and commercial interests may also supersede the desire of the speakers 
to present new developments in detail to the public. It should probably 
be mentioned that in 1993 a Japanese/North Rhine Westphalian sym­
posium took place in Dusseldorf and a European/Japanese symposium 
in Berlin. 

A new development started in September of 1993 with the first Euro­
pean Congress on Fuzzy and Intelligent Techniques (EUFIT '93). This 
congress drew approx. 500 participants of which 300 came from universi­
ties and the rest from industry and other research and administration in­
stitutions. When the Fuzzy-Neuro-Initiative of North Rhine Westphalia 
was officially opened in the framework of this conference the number of 
participants even grew to approx. 700. Roughly half of the participants 
came from Germany, about 10 % from abroad and the rest from other 
European countries. It included again - similar to other events of this 
type - an interesting exhibition of fuzzy products as well as of fuzzy 
tools. A growth of these exhibitions, in particular, indicate a growing 
acceptance of fuzzy technology in industry and in administration. Even 
though the majority of applications is still in the area of fuzzy control 
and otller more technical areas, such as quality control, analytics, etc. 
applications in the management areas (production control, market seg­
mentation, strategic planning, etc.) seem to appear in growing numbers. 
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This is particularly true for applications of fuzzy data analysis in very 
diverse areas. This development is certainly facilitated by a considerable 
number of very user friendly case tools (fuzzy control shells) which have 
been built in Germany during the past two years including the proba­
bly first tool for fuzzy data analysis. A certain maturity of this area is 
also documented by a surprisingly high number of books in German on 
fuzzy technology that came out during 1993/94: including the two or 
three translations from English into German more than 30 books have 
appeared in German until 1994. 

In 1994 a certain synchronisation of the development in Europe, 
Japan and the USA occurs: conferences in this area in all three conti­
nents (including EUFIT '94) follow the same pattern by including, gen­
erally under the name "intelligent computing" , the three areas of fuzzy 
technology, artificial neural nets, and evolutionary computing. This is 
certainly a very attractive development because these three areas have 
been cross fertilizing each other since the beginning of the 90ies and a 
closer cooperation of people and institutions in these three areas can 
certainly generate synergies and cut out double work. 
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2.1. Fuzzy Control: An Overview 
Hans Hellendoorn 

Abstract 

Fuzzy control is on its way to become an established control 
theory besides other modern control techniques. But there are 
several new trends, new directions in fuzzy control that should be 
observed. First of all, the trend from first generation to second 
generation systems. Secondly, application examples of fuzzy the­
ories besides fuzzy control, such as fuzzy data analysis, fuzzy di­
agnosis, etc. Thirdly, the combination of fuzzy with other modern 
techniques like neural networks and genetic algorithms. Fourthly, 
the coming into existence of a design and development methodol­
ogy for fuzzy control, similar to that of conventional control. Here 
also the combination of fuzzy control with other control techniques 
plays a role. 

1 First and Second Generation 
Systems 

11 

"The fuzzy wave has reached Europe" someone wrote in the beginning 
of the nineties. In a relatively short period of time many applications 
with a label 'fuzzy' came to the market: household appliances, auto­
mobile components, automation systems, PLCs, traffic systems, etc. In 
particular Japanese market studies show an extremely wide variety of 
application areas. On an international workshop in Munich, 1992, E.H. 
Mamdani, who may be called the inventor of the fuzzy control theory, 
expressed the reason of this fuzzy wave as follows: "There is an abun­
dance of open-loops in modern industry, in cameras, in cars, in video 
recorders, etc. These are all problems where man has to close to loop by 
hand, e.g., in focussing a camera. Japanese industry uses fuzzy control to 
close many of these open loops. Most often it concerns relatively simple 
problems, but there are so many small and relatively simple problems 
that actually demand to be solved." What happened in the late eight­
ies and beginning nineties was exactly that. Fuzzy control was tested 
on many relatively simple problems. Compare, for example, the large 
number of publications on the inverted pendulum. The inverted pendu­
lum problem is from a control point of view, or more striking, from an 
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automation point of view, an extremely simple problem when compared 
with the control of a chemical process or a large electricity network. 
Therefore, in fuzzy control we have introduced the division in first and 
second generation fuzzy systems. 

A first generation fuzzy system is characterized by the following prop­
erties. 

1. Small-scale knowledge bases 
Most first generation fuzzy control systems are two inputs one output 
systems, with usually three to seven fuzzy sets on each domain. This 
leads, for a two inputs system with five fuzzy sets on each domain, to 
potentially 25 rules, where usually only ten to fifteen rules are being 
used. The difference between such a system and systems as described by 
Dr. Meyer-Gramann in this volume are gigantic. There are no problems 
with automatic consistency or completeness proofs, the rule base can 
easily be represented by a simple look-up table on a PC-screen, and it 
can easily be checked which rules "fire" during run-time. 

2. Purely fuzzy 
Most first generation fuzzy systems are purely fuzzy, that means, they 
are stand alone systems and are not hybrid. They do not contain self 
learning, neural networks, chaos theory, or genetic algorithms compo­
nents, neither are they integrated in a larger control or diagnosis envi­
ronment. The inputs are usually clearly defined and crisp, i.e., there are 
no problems with stochastic uncertainties due to low quality sensors as 
described by Palm [Palm94]. 

3. Software-based 
Usually, to develop a fuzzy controller or, more generally, a fuzzy system, 
software tools on PC are used. These development tools contain editors 
to define the domains, the fuzzy sets for the input and output domains, 
the rule bases, etc., and are able to translate such a fuzzy system into 
a programming language, usually C, but sometimes also to special mi­
croprocessor or PLC-Ianguages. More elaborate fuzzy development tools 
like SIEFuzzy (Siemens), TILShell (Togai InfraLogic), FIDE (Aptronix), 
and FuzzyTech (Inform) also offer analysis and testing possibilities for 
the fuzzy system. The result of such a process is a purely software based 
fuzzy system. Most today fuzzy applications and prototypes are based 
on this principle. Problems can occur when the system has to be online 
adapted in real-time and the processor is not quick enough to allow this. 
In that case one may need special fuzzy hardware. Another problem 
may occur if, due to production costs, the hardware is very limited in 
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its performance, either in its memory, its speed, or both. In that case 
one has to count the costs where to make changes and to put away fuzzy 
components. 

4. Min-max-centroid 
In our book [Driankov /Hellendoorn/Reinfrank93] we have shown a great 
variety of fuzzy operations that can be used in fuzzy control. We showed 
there alternative inference methods (Mamdani and Godel), several T-, 
S- and c-norms to implement and, or, and not, a variety of defuzzifica­
tion operators, etc. An even greater collection of such operators can be 
found in [Dubois/Prade80] and many other publications from Dubois & 
Prade. Furthermore, many fuzzy systems, for example fuzzy data anal­
ysis systems or fuzzy diagnosis systems - both typical representatives 
of second generation fuzzy systems -, do use completely other opera­
tors and do not use defuzzification. Nevertheless, most of today fuzzy 
systems use only minimum and maximum operators for and and or, and 
use the center-of-sums [Hellendoorn/Thomas93] or centroid defuzzifica­
tion method. Experience has shown that in larger fuzzy systems these 
simple mathematical operations do not satisfy. 

5. Fuzzy control 
Most problems that were solved in the past with the help of the fuzzy 
theory were control problems. Therefore, it is usual to talk about fuzzy 
control as a generic term, denoting that part of the fuzzy set theory 
that is used for applications. This means that there is no differentiation 
between, e.g., fuzzy control, fuzzy classification, fuzzy diagnosis, fuzzy 
expert systems, fuzzy data analysis, fuzzy image processing, etc. Second 
generation fuzzy systems tend in a direction away from pure control to 
more complex integrated systems (see Sect. 2) 

6. Projecting 
In conventional control theory there are many ways to build a control 
system. It has to be decided whether a PI or PD controller should be 
used, Ricatti-methods can be used, there are methods to solve delays and 
hysteresis, etc. But all methods have in common that in the end, after 
having implemented the system in a real time environment, an operator 
has tune the system. It would be an illusion that fuzzy controllers are 
so much better designed due to the rule-based approach that they do 
not need this last step. Nevertheless, in almost no earlier publication on 
fuzzy control application this problem is mentioned. Palm describes this 
problem extensively in his paper in this volume. 
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In this paper we want, as the title suggests, to deal with new trends 
in fuzzy control, with properties of second generation fuzzy systems. It 
will be clear now where extensions to the current theory can be expected. 
Fuzzy systems theory and applications can be considered as an amoeba 
that is growing in different directions. We will describe the following 
directions. In Section 2 we will focus on the application axis. We will 
consider there new kinds of applications and describe inherent problems 
that have to be solved. In Section 3 we will describe combinations of 
fuzzy systems with, e.g., neural networks or genetic algorithms and de­
scribe some possibilities in that area. In Section 4 we will describe design 
and development problems of more complex fuzzy systems. Furthermore, 
we will compare the design of fuzzy systems with that of conventional 
control and see how relatively young and unexperienced fuzzy is in com­
parison to her so much elder sister - but also more attractive. 

2 New Application Trends in Fuzzy 

When one considers lists of applications realized with the help of fuzzy 
then it is strange that every~ne talks about fuzzy control although many 
projects have to do with classification and diagnosis. Fuzzy control is 
like the notion fuzzy logic being used in two ways. Fuzzy logic is on the 
one hand side being used as a generic term, denoting the whole fuzzy set 
theory from fuzzy control to fuzzy topology, on the other hand side, it 
is being used in its narrow sense denoting, say, approximate reasoning. 
In the same way fuzzy control is more and more being used as a generic 
term denoting that part of the fuzzy set theory that is used for applica­
tions as well as in its narrow sense, denoting closed loop fuzzy systems. 
Nevertheless, we believe it is better to differentiate between, e.g., fuzzy 
control, fuzzy classification, fuzzy diagnosis, fuzzy expert systems, fuzzy 
data analysis, fuzzy image processing, etc. In general, a fuzzy system can 
be described like in Fig. 1a. There is a process, e.g., a paper processing 
system or a car, a fuzzy system, and a development system, e.g., a PC­
tool. The developer of the fuzzy system stands on the top of the figure. 
Furthermore, there may be operators, one is responsible for the input 
of the fuzzy system and the output of the process, the other one may 
deliver input to the process and obtains output from the fuzzy system. 
This needs not necessarily be a human operator, it can also be another 
fuzzy or non-fuzzy system delivering inputs or processing outputs. From 
this picture we can derivate several kinds of fuzzy systems, e.g., fuzzy 
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Ce) Cd) 

Figure 1: A generic fuzzy system. 

controllers, fuzzy classificators and fuzzy diagnosing systems. 
A fuzzy control system (Fig. Ib) is a closed loop system, so there is 

no operator available or the operator is part of the control loop. An 
example of a fuzzy control system within Siemens is the vacuum cleaner 
that adapts its motor power depending on the amount of dust on the 
floor and the kind of carpet. Another example is the torque optimizer 
in the anti-slip system that is used in trains and underground systems. 
Inputs are, among others, the velocity of the train and the resistance of 
the rails. 

Classification is basically an ordering operation on metric and non­
metric scales, i.e., based on expert opinions as well as on measured and 
usually prestructured data. Mathematically, classification is related to 
set theory rather than functions. In fuzzy classification, it is possible to 
deal with vagueness of the expert opinions and with badly defined model 
based relations, e.g., input-output relations. Classification systems are 
able to allocate unknown objects or system states to a number of classes. 
If one considers the different input vectors as axes in a high dimensional 
space frame, the theoretical basis of fuzzy classification can be consid­
ered as a pattern concept. So, a set of classes in a high dimensional 
input space is described by the classification model. This input space 
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is described by properties of the objects and forms a kind of model. In 
fuzzy classification the properties may be described by linguistic values 
and the classes that exist in the high dimensional space frame need not 
be disjunct. The task of the system designer is to find out which prop­
erties or input signals are needed and playa significant role to classify 
the system. To a certain degree the classification process becomes better 
when more input signals are available (due to errors in the input signals 
and correlation too much input signals can cause the system to loose 
its generality) but in practical implementations the price of the product 
usually puts a natural limit on the number of input signals. 

A fuzzy classification system (Fig. Ic) does not consist of a loop. It 
takes the input and output of some process and tells in what state the 
process is. This information can, of course, be used to control the process 
directly or to give the operator the opportunity to interfere. An example 
of a fuzzy classification system is the fuzzy washing machine, where some 
parameters of the washing machine are used to determine the amount 
and kind of laundry. The output of this classification is used to take 
a decision how to spin-dry or how to get optimal friction between the 
laundry. Another example is the fuzzy automatic transmission system. 
Using some sensors that are available in the car (e.g., from the ABS 
system, the power steering system, the motor control system, etc.) the 
classification system determines the state of the car (e.g., the car is 
loaded, the car is going uphill, etc.). So the pictures of the human 
beings on the left and right hand side of the fuzzy classification system 
in Fig. Ic will usually be other systems, delivering and processing the 
information. In a fuzzy diagnosis system (Fig. Id) human beings play 
an explicit role. They may deliver input to the system when the system 
explicitly asks for additional information. Furthermore, they may ask 
the diagnosis system how it came to its conclusion or to give more details 
about the diagnosing procedure. 

Fuzzy diagnosis systems are closely connected with fuzzy expert sys­
tems. The both differ from fuzzy classification systems due to the larger 
role of the human operator. Application areas of fuzzy diagnosis sys­
tems are usually large plants that can either only with great difficulties 
be described by exact algorithms or are difficult to model with conven­
tional mathematical models. In the first case it often happens that the 
rule base becomes too large. Prof. Zadeh is true when he states that 
fuzzy expert systems use much less rules than conventional expert sys­
tems which improves the readability and helps to avoid inconsistency 
and incompleteness. It has to be stated that there exist many model 
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Figure 2: Two examples of clusters or patterns that can be recognized 
with human eyes. Left: sun, airplane, house, tree. Right: the characters 
F and U. 

based diagnosis systems that perform very well. It is only in these cases 
where the problem is hard to model mathematically or otherwise that 
fuzzy should be used. An advantage of fuzzy diagnosis systems is that 
the knowledge of the operator can be used. 

An important aspect of diagnosis systems is the presence of a user 
interface. Usually, the human operator can ask questions to the system 
and can order the system to explain why it got to a certain diagnosis. 
Another aspect is the way the results are presented to the user. Normally, 
defuzzification makes no sense in diagnosis systems. What is needed for 
these systems is a better theory of linguistic approximation to give the 
user understandable answers. 

Fuzzy data analysis is more difficult than any of the aforementioned 
theories. The main goal of fuzzy data analysis or fuzzy cluster analysis 
[Bezdek81} is to search for structure in data. A subgoal is to reduce 
the complexity of the data structures. Fuzzy data analysis is like fuzzy 
diagnosis very similar to fuzzy classification. Nevertheless are there some 
differences which makes fuzzy data analysis a strict subclass of fuzzy 
classification. The best instrument for data analysis is the human eye. 
Clusters of data or patterns that can very easily be detected with the 
eyes may be extremely difficult to detect with automated methods (see 
Fig. 2). The first task of fuzzy data analysis therefore is to find features 
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of the data that can help to cluster and identify the data. Here one 
can use fuzzy notions like 'close', 'compact', 'bulge', etc. After this each 
cluster has to be identified. For example, in character recognition, one 
has first to identify the individual characters, and, after that, one has to 
give names to each character. Each of these tasks has turned out to be 
extremely difficult. A problem with the fuzzy theory is to find the right 
fuzzy operators to define notions like 'similarity' or 'dissimilarity' of two 
fuzzy sets. 

3 Fuzzy-Neural-Genetic-Chaos 

Another trend in fuzzy control is the combination of fuzzy systems with 
other modern techniques like neural networks, genetic algorithms, and 
chaos theory. Several 'neural-fuzzy' products are already available on 
the market. Furthermore, the Korean company Goldstar lately pre­
sented a 'fuzzy-chaos-neural' washing machine. The difficulty with all 
these notions is that they can easily be used as buzz-words to make ad­
vertisement for products, but there is no guarantee that by combining 
two good techniques one obtains a new technique with the advantages 
from both. In the worst case, the new technique inherits exactly the 
disadvantages from its 'parents'. 

In this section we will show some ways how to combine fuzzy sys­
tems and neural networks. Furthermore, we will show the use of genetic 
algorithms. Lastly, we will make some remarks about chaos theory and 
nonlinear dynamics. 

There are many ways to combine neural networks (NN) and fuzzy 
systems (FS): FS preprocessing data for NN and vice versa, FS cal­
culating parameters of NN and vice versa, FS delivering knowledge to 
prestructure NN, FS to interpret NN, NN to learn fuzzy rules and rule 
weights, etc. We will now discuss the four most used ways (Figure 3). 

a. Use NN to generate input for FS (Fig. 3a) 
There are many processes that are difficult to describe with mathemat­
ical models and where it makes sense to determine the strategy for the 
control with the help of a neural network and to use these values in 
fuzzy rules. The fuzzy rules then control the process or even deliver 
information to the actual control level of the plant where conventional 
controllers may be used. So the arrow in Fig. 3a) has a temporal mean­
ing: first, the neural network comes into action, the the fuzzy system 
does its work. An example of this can be found in [Osaki et al.l. Another 
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Figure 3: Four ways how neural networks and fuzzy systems can be 
combined. 

example is the Siemens paper processing system that was installed in a 
plant in Caima (Portugal). Here, neural networks are used to calculate 
the cooking time and optimal pressure depending from the quality and 
kind of trees that come in. Afterwards, the several fuzzy systems control 
the process (cf. Fig. 4). 

h. Use NN to generate parts of a FS (Fig. 3b) 
Inputs to the neural network are numeric or linguistic data, the output 
are rules, parts of rules or membership functions. This approach benefits 
from the ability of neural networks to perform complex classification 
tasks. This method takes place once to build up the fuzzy system. The 
principle is illustrated in Fig. 5. A cluster in the input-output domain is 
recognized by a neural network. Then fuzzy sets on the input domain are 
either chosen out from a predefined set of fuzzy sets or determined by the 
neural network. Consecutively, rules are formed that can even have rule 
weights that depend on the quality of the classes, e.g. the compactness 
of a class. TILGen and the neural network tool in FuzzyTech are based 
on this principle. We have tested these systems with many practical 
examples in our laboratory. These systems work well in relatively simple 
two inputs one output systems. In more complex systems it turns out 
that other classification methods perform as well or even better. 
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Figure 4: An overview of the role of fuzzy logic in the paper production 
process. 

c. Use NN to adapt a given FS (Fig. 3c) 
This means to introduce learning to a fuzzy system. Wang and Mendel 
[Wang/MendeI91] discuss an approach how network learning can directly 
be applied to fuzzy rules. Usually, in this case neural networks are used 
to learn an inverse model of the process by observing the input-output 
data. This inverse model is used to adapt parameters of the fuzzy system 
online. This means that the fuzzy system has the possibility to adapt 
itself during its life-time to the process on which it is operating, such taht 
it becomes optimally appropriate for its task. A disadvantage of this 
method is that the fuzzy system can learn wrong things. In the paper 
processing company such a system might learn during a long and dry 
summer that there exist only dry trees and will be pretty 'surprised' when 
after the first autumn showers wet trees are brought into the process! 
Here one needs new techniques to avoid drifting of the system. 

d. Integrate FS and NN (Fig. 3d) 
This approach is intriguing with respect to the combination of the ad­
vantages of the different approaches or the compensation of the disad­
vantages respectively. One possible way is to translate a fuzzy system 
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Figure 5: An example of the correspondence of the locations of clusters 
and those of the input domain fuzzy sets. 

into a neural network. This helps the neural network in two ways. First, 
it does not need to learn from scratch, i.e., the neural network is already 
prestructured instead of consisting of random weights when the learning 
process starts. Secondly, if the data set is incomplete with respect to 
some 'corners' of the universe of discourse the fuzzy system might fill 
these gaps with expert know how. Such a combination of fuzzy systems 
and neural networks becomes even better if there is a way to translate 
the thus obtained neural network back into a fuzzy system. This means 
that the neural network is not anymore a black box that does not have 
any semantical meaning but can be interpreted by a fuzzy system (cf. 
Fig 6). Siemens uses this approach in several projects. 

Genetic algorithms are like neural networks appropriate to learn 
input-output relations from data sets. Genetic algorithms have the ad­
vantage that they can 'jump' through the input-output domain while 
searching for local and global minima and maxima. So, genetic algo­
rithms can play the role ofthe neural networks in Figs. 3b and c, although 
usually genetic algorithms are to slow to be used in online processes like 
presented in item c. One disadvantage of the methods band c described 
above is that usually many input fuzzy sets are generated during the 
learning process. One can imagine that more than, say, 10 fuzzy sets on 
one domain that are partially overlapping each other may lead to rule 
bases that are hard to interpret. Genetic algorithms have been used to 
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Figure 6: A combination of neural networks and fuzzy systems. The 
fuzzy system can be translated to a neural network, then the neural 
network can learn from data. The result can be translated back to a 
fuzzy system. 

eliminate some of these fuzzy sets with only a small predefined loss of 
quality. 

The future role of fuzzy systems in combination with chaos theory or 
nonlinear dynamics is hard to forecast. Goldstar in Korea does not pro­
vide much information about their 'fuzzy-neural-chaos' washing machine, 
but it seems that chaos theory is used in the simulation environment of 
the process to cause 'unexpected' experiences such that testing in the 
simulation environment can make more sense. 

4 Design of Fuzzy Systems 

In [Hellendoorn93] we have extensively described the design process as 
sketched in Fig. 7. We will now only summerize the design questions 
and then say more about practical design problems. 

The first question that arises when one has to solve a particular prob­
lem is: "Should this problem be solved with fuzzy control?" The more 
general question that has to be answered is "Which classes of problems 
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Figure 7: The design and development process of a fuzzy controller. 

can be solved with fuzzy control?" The second question is: "Which 
design parameters should be used for this problem?' We expect that 
in the future we can figure out a number of certain classes, which de­
scribe various basic types of problems. So, the more general question 
that has to be answered is: "To which class of problems does this prob­
lem belong?" The third question is: "What are the fuzzy rules for this 
problem?' or, alternatively, "How does the rulebase look like?" This 
question can be answered with the help of experience in the develop­
ment of conventional expert systems, or by using neural networks or 
genetic algorithms to learn the fuzzy system. The fourth question is: 
"Which hardware platform has to be used?' The answer to this question 
is highly problem dependent. Possible decision criteria are: real-time re­
quirements, resolution, price, standardization, etc. The fifth question is: 
"How should a fuzzy controller be tested?' We distinguish between three 
different types of testing respectively analyzing: (1) Static testing: This 
means that the fuzzy controller is not integrated in any system but the 
controller itself is analyzed. (2) Closed-loop simulation: This method 
assumes that a model of the process to be controlled is available. (3) 
Closed-loop online analysis: This method avoids the modeling of the pro­
cess to be controlled but requires advanced tools which allow graphical 
online-tuning (modification) and online debugging (representation) via 
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communication with the hardware platform. The sixth question that has 
to be answered: "How should the process model be build'!" There is no 
general consensus how to build the model. Depending on the required 
preciseness and availability one can choose mathematical models, de­
scribed, e.g., by differential equations as well as fuzzy models, described 
by linguistic rules. Also various process identification techniques may 
be appropriate to describe the principles of the process to be controlled 
[Driankov /Hellendoorn /Reinfrank93j. 

In the design process of a fuzzy controller several extra problems 
have to be solved. Here one has to compare the design process of fuzzy 
controllers with that of conventional controllers, where one has to deal 
with several complicated process properties, like abrupt changes of the 
setpoint. This may lead to a large control output. Therefore, in con­
ventional control usually the set point changes are not computed by the 
controller. In fuzzy control there studies in the literature with respect 
to this derivative kick. 

Another point is the combination of a fuzzy controller with a high­
pass or low-pass filter to dampen specified frequencies. In conventional 
control these filters are integrated in the design of the control system. 
There are no studies in fuzzy control which show the feasibility of de­
signing a combination of FLC-PI and FLC-PD controllers. 

A big problem in the control of actual processes is the sampling time. 
In fact, finding the right sampling time still remains more of an art than 
science. One has make a trade-off between process dynamics and com­
puter capacity at disposal. Furthermore, one has to keep in eye the 
disturbance characteristics. Many papers regarding to this subject in 
conventional control theory were published, but in the fuzzy literature 
this problem has seldomly been described. Time delay is an even more 
complicated problem. This problem occurs due to the presence of dis­
tance lags, recycle loops or dead time. The time delay makes information 
from the true process arrive later than desired for the controller. Gener­
ally speaking, all information that is too old causes problems. They limit 
the performance of the control system and may lead to system instabil­
ity. In the case of fuzzy control only few studies to this phenomenon 
exist. Because of the limited number of parameters, a conventional PID 
controller can not arbitrarily influence a process with higher-order dy­
namics. In systems with significant oscillations a higher-order regulator 
is needed. A general PID controller gives the necessary freedom to ad­
just for complex dynamics, and the same is valid for its discrete version. 
For a n-th order process it is well known that the order of the controller 
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must be n -1, and in this way we have a PIDn - 1 controller. In the case 
of fuzzy control there are relatively few attempts to design controllers 
that deal with higher order system dynamics. For example, in [Boverie 
et al.93] the FLC is designed as a parallel structure of n - 1 single­
input/single-output fuzzy controllers augmented with an integrator. 

As in the case of conventional controllers, we have two major types of 
fuzzy controllers: a position type fuzzy controller known as PD-FC, and a 
velocity type fuzzy controller known as PI-FC. There has been little work 
done comparing the performance of these two types of fuzzy controllers 
but some recent studies lead to the following conclusions [Lee/Chae93]: 

"The PI-FC gives better performance in steady state but performs 
rather poorly during the transient. To improve its performance 
during transient appears to be difficult especially for a higher order 
system. Even in the case of a second order system the maximum 
variation of the incremental control output has to be limited to 
a rather small one to reduce overshoot of the transient response. 
However, this is a cause for increase in rise time. Thus to define the 
maximum variation of the incremental control output which gives 
both satisfactory rise time and minimum overshoot is a difficult 
task." 

One natural way to overcome the above situation is introduce the second 
derivative of error as an additional input to the fuzzy controller (the 
other two being error and change of error). However it is not easy to 
measure the instantaneous value of this quantity nor is it easy to define 
the boundaries of its universe of discourse over which its fuzzy values 
have to be defined. 

We could proceed longer in enumerating problems that have to be 
solved to come to a mature design and development methodology (cf. 
[Driankov /Hellendoorn/Palm94]). Future trends in fuzzy control are go­
ing into a direction to get better understanding of the system parameters 
and their correspondence with the process to be controlled. 

5 Outlook 

In this paper we have shown some trends in fuzzy. Firstly, new applica­
tion trends in fuzzy like fuzzy classification and diagnosis that are going 
to play an important role besides the traditional fuzzy control. Secondly, 
the combination of fuzzy and other modern technologies like neural net­
works, genetic algorithms and chaos theory. Thirdly, the development 
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of a design methodology for fuzzy systems which includes a design strat­
egy how to optimize a fuzzy controller and ways to deal with complex 
process properties. 

The next four papers deal with several of these new trends. In Input 
Scaling of Fuzzy Controllers Rainer Palm (Siemens R&D) deals with 
the problem how to develop an optimally adjusted fuzzy controller. In 
conventional control theory there has been done much research in this 
direction. The problem in fuzzy control is that there many parameters 
that can be changed. It is usual to start the tuning process with the 
scaling factors, more or less similar to conventional control. Dr. Palm 
shows a way to scale the input domains with the help of correlation 
coefficients. 

Fig. 7 shows the design and development process of fuzzy systems. 
One important aspect is the development of the knowledge base which 
includes knowledge acquisition from experts or machine learning tech­
niques to derive rules, but also consistency and completeness checks. 
The next question then is how to store the rule base. There are usually 
two ways, the first is to use a look-up table and interpolation methods 
which saves memory but costs run time, because interpolation has to be 
performed during run time. The second way is to store the whole control 
surface which saves run time but costs a lot of memory, in particular in 
high dimensional input spaces (exponential). Dr. Klaus Dieter Meyer­
Gramann shows a way out of this dilemma in his paper How to Store 
Efficiently a Linguistic Rule Set in a Fuzzy Controller. 

Jorn Hopf and Frank Klawonn in their paper Learning the Rule Base 
of a Fuzzy Controller by a Genetic Algorithm also deal with the knowl­
edge base. They present a method based on genetic algorithms to design 
the knowledge base of a fuzzy system. This method can be compared 
with Fig. 3b where neural networks were used to produce fuzzy rules 
although genetic algorithms demand more information, e.g., optimiza­
tion criteria and a model of the process to test the quality of a newly 
produced fuzzy controller. 

The paper by Heiko Knappe, Comparison of Conventional and Fuzzy­
Control of Non-Linear Systems, shows in an excellent way the corre­
spondence between design methods in conventional and fuzzy control 
illustrated by an example in multi-mass systems with special nonlinear 
disturbances. It shows the importance of concepts like speed control and 
position control in fuzzy systems (cf. [Driankov /Hellendoorn/Palm94]). 
Furthermore, it shows some principal properties of fuzzy controllers and 
many research problems. 
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2.2. Input Scaling of Fuzzy Controllers 

Rainer Palm 

Abstract 

The paper deals with the optimal adjustment of input 
scaling factors for Fuzzy Controllers. The method bases on 
the assumption that in the stationary case an optimally ad­
justed input scaling factor meets a specific statistical input 
output dependence. A measure for the strength of statis­
tical dependence is the correlation coefficient. The article 
deals with the so-called equivalent gain which is closely con­
nected to the cross-correlation of the controller input and 
the defuzzified controller output. Without loss of general­
ity, the adjustment of input scaling factors using correlation 
functions is pointed out by means of a single input - single 
output (5150) - system. The contribution concludes with a 
set offuzzy rules controlling a redundant robot manipulator. 

1 Introduction 

29 

Most fuzzy controllers (FC) work in such a way that, on the basis of crisp 
desired inputs and crisp actual outputs, the system (plant) is controlled 
also by crisp manipulated variables. In this wide-spread case fuzziness 
is restricted only to the controller which is known to be more robust 
than conventional controllers [Lee 90, Driankov 93, Palm 92b). The op­
eration of a FC of this type requires fuzzification of the inputs (e.g. error 
and change of error): each crisp input is attached to a subset of grades 
of membership depending on the a priori chosen subset of membership 
functions. The design of a FC requires information about the system to 
be controlled such as operating areas of the FC inputs and the manipu­
lated variable of the FC output. For simplicity, in most cases the mem­
bership functions of the input and output variables are defined within 
normalized intervals (universes of discourse). In the case of normalized 
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universes of discourse an appropriate choice of specific operating areas 
requires respective scaling or denormalization factors. An input scal­
ing factor transformes a physical signal into the normalized universe of 
discourse of the controller input whereas the output denormalization fac­
tor provides a transformation of the defuzzified output signal from the 
normalized universe of discourse of the controller output into a physi­
cal manipulated variable. The importance of an optimal choice of input 
scaling factors is evidentely shown by the fact that ill scaling results in 
either shifting the operating area to the boundaries or utilizing only a 
small area of the normalized universe of discourse. On the other hand, 
the adjustment of the output denormalization factor affects the closed 
loop gain which has direct influence on system stability. The behavior 
of the system controlled finally depends on the choice of the normalized 
transfer characteristics (control surface) of the controller. In the case 
of a predefined set of rules the control surface is mainly determined by 
shape and location of the input and output membership functions. Tak­
ing these influences into account for controller design one should pay 
attention to the following priority list: 

1. The output denormalization factor has the most influence on sta­
bility and oszillation tendency. Because of its strongest impact on 
stability this factor is assigned to the first priority in the design 
process. 

2. Input scaling factors have the most influence on basic sensitivity 
of the controller with respect to optimal choice of the operating 
areas of the input signals. Therefore, input scaling factors are 
assigned to the second priority. 

3. Shape and location of input and output membership functions 
and, with this, the transfer function of the normalized controller 
influence positively the behavior of the system controlled in dif­
ferent areas of the state space provided that the operating areas 
of the signals are optimally chosen through a well adjusted input 
scaling factor. Therefore, this aspect is getting the third priority. 

Once, by means of some system analysis, the scaling factors and the 
parameters of the membership functions have been chosen the next task 
is to tune them in order to improve the systems's behavior according to 
some optimization criteria. In this context tuning should consider the 
same priority list as for the design process. 
Most of the reports on tuning refer to membership functions in order to 
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change the transfer characteristics of the controller [Smith 92, Zheng 93, 
Boscolo 92]. Examples for gain tuning can be found at [Katayama 91, 
Maeda 92, Viljamaa 93, Braae 79, Zheng 92]. Tuning of rules has been 
considered by [Procyk 79, Peng 90]. Many reports deal with integral 
criteria with respect to particular test signals such as step, pulse, and 
random functions, respectively [Smith 92, Zheng 93]. This work deals 
with the 2nd level of tuning hierarchy, namely with appropriate scaling 
of controller inputs which has the most influence on the sensitivity of 
the controller. It is assumed that both the rule set and the membership 
functions are predefined and kept constant during the tuning process. 
The input data are assumed to be statistically distributed satisfying a 
Gaussian distribution whose parameters are assumed to be unknown. 
A poor knowledge about the distribution parameters can be explained 
by slow varying plant parameters or drift in the sensory used for state 
observation. Here, we distinguish three relevant cases: 

L Known mean (e.g. mean=O) and unknown deviation. 

2. Unknown mean and known deviation. 

3. Mean and deviation are unknown. 

Considering a controller with multi input and single output cases 1 - 3 
can be processed on-line measuring the linear dependence between each 
input and output signal of the controller. A measure for linear input­
output dependence of a transfer element is the cross-correlation function 
and the cross-correlation coefficient, respectively. Firstly, the shift of the 
signal's mean value along the universe of discourse ensures the signal to 
meet the relevant operating area of the control surface. Secondly, once 
the relevant region is reached the tuning procedure keeps on changing 
the particular input scaling factor until the goal, the cross-correlation 
coefficient to be a certain value near its maximum, is reached. It is shown 
that for Gaussian input signals a given FC can be imaginarily replaced 
by an equivalent gain which strongly depends on die nonlinear transfer 
characteristic of the FC [Schlitt 68]. This method allows the utilization 
of linear system theory even in the case of nonlinear elements within 
the control loop. Therefore, an appropriate choice of the equivalent gain 
has a great influence on the behavior of the closed loop system. The 
equivalent gain can be expressed in terms of the standard deviation of 
the input and the input-output cross-correlation function. The claim is 
that for a stationary input a certain amount of signal amplitudes around 
the operating point of the FC should be linearily transmitted by the FC. 



32 Fuzzy Control 

As already mentioned, a measure for linear input-output dependence of 
a transfer element is the cross-correlation function. Hence, if a specific 
linearity between input and output is required one has to adjust the 
standard deviation in such a way that a corresponding cross-correlation 
coefficient is met. For a given SISO FC structure the only parameter to 
influence the equivalent gain is the scaling factor for the input signal. 
This result can easily be extended to the Multi Input/Multi Output case 
(MIMO) if the individual states of the plant to be controlled are non­
correlated with each other. The method presented deals with the optimal 
adjustment of scaling factors for FCs with the help of the input-output 
cross-correlation [Palm 93]. If the distribution of the signal is a priori 
known the method can be characterized as a design approach only by 
consideration of the nonlinear FC without closing the control loop. An 
example shows how to tune scaling factors in the process of kinematical 
control of a redundant robot manipulator. 

2 Input output correlation for a Fe 

Equivalent gain - SISO case Fuzzy controllers with crisp inputs 
and outputs can be considered as multidimensional nonlinear transfer 
elements with upper and lower limits whose transfer characteristics at 
the origin can be described by 

u(O) = o. (1) 

This can be justified by the following reasons: 

1. Most important applications deal with the error e or error vector 
e = (e, e, ... l at the controller's input so that the respective input 
signal is centralized. 

2. A stationary signal can, with the knowledge of its mean value, 
always be centered so that a centralized signal at the controller 
input can be assumed. 

Let the system to be controlled be linear or, within the operating area, 
linearizable with lowpass characteristic (see fig. 1). Furthermore, let the 
desired value w include Gaussian noise. We then obtain non-Gaussian 
noise at the output of the FC because of its nonlinear transfer char­
acteristic. On the other hand, we suppose the system to filter out all 
frequencies causing a non-Gaussian distribution. In this way, we expect 
to have Gaussian noise at the output of the system and, with this, at 
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the adder where the desired value w is compared with the actual value 
x. With these assumptions the scaled signal e$ = (w - x) . Se is also of 
Gaussian type. From nonlinear system theory we know the describing 
function for sinusoidal signals and the equivalent gain for signals with 
noise [Schlitt 68]. The basic idea of this method is to substitute imag­
inarily the nonlinear element in a closed loop system by a linear one 
whose gain depends on the amplitude eo (for sinusoidal inputs) or vari­
ance CT~ (for noise) of the controller input. The main purpose of this 
approach was the stability test of the nonlinear system to be controlled 
with the means of linear control theory. This method is here adopted 
for the adjustment of scalings of a given FC. 

0.-. __ _ ---- --
e Fe Plant 

I x 
+ x 

Figure 1: Closed loop system with a nonlinear FC 

Let e be a stationary and ergodic Gaussian process. 
Furthermore, let 

where 

U=K(CT~).e+v 

K (CT;) - equivalent gain corresponding to a specific FC trans­
fer characteristic 

v - noise which is non-correlated with e$. 

Let, finally, 

(2) 

Re.u(CTe) = E[(e(t) - E[e(t)]) . (u(t) - E[u(t)])] (3) 
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be the linear cross-correlation function for T = 0, and 

+T 

E[x(t)] = t~~ 2~ J x(t)dt. 
-T 

the expected value. 
For simplicity the mean values of e, u, and v are equal to zero: 

E[e] = 0; E[u] = 0; E[v] = o. 
Multiplying both sides of eq.(2) with e and computing the expected 
values one obtains 

with 

E[e . u] - cross-correlation Rev. 
E[ e2] - variance u;. 

Because of E[e . v] = 0 one obtains for the equivalent gain 

K( 2) _ Rev.(ue) 
ue - 2· ue 

(4) 

(5) 

With regard to scaled Gaussian distributed input signals es we then 
obtain the equivalent gain 

(6) 

Input scaling The input e is scaled by means of 

es = e . Sc (7) 

where 

scaling factor, (8) 
es scaled input. 

Let the scalar output signal u be computed by the center of gravity: 

B 

U = J ~u ·U du 
A fA I'u du 

(9) 
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where 

Jlu E (0,1) 
u E (A,B) 

degree of membership, 

universe of discourse. 
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(10) 

For simplicity we assume the denormalization factor of u to be one. 
Furthermore, let e(t) and u(t) be stationary and ergodic processes. The 
standard deviations of the scaled signal e8 (t) and non-scaled signal e(t) 
are connected in the same way as the signals e8 and e are: 

(11) 

From (6) and (11) we get 

K( ) _ Re,ii(Sc ·O'e) 
O'e - 2 2 . Sc . 0' e 

(12) 

u T 

Figure 2: Symmetrical nonlinear transfer characteristic of a Fe 
with limits 

Both gain K and cross-correlation Re,ii reach their maximum values 
in the case of maximum linear input-output connection. The normalized 
correlation coefficient 

R- _ _ Re,ii 
e,u -

0' e •. O'ti 
(13) 

reaches its maximum at Re iilmar = 1. Re ii reaches its minimum at , , 

- /r Re iilmin = -, 11' 
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if the transfer characteristic is symmetrical with respect to the mean 
value e. = E[e.(t)] (see fig.2). This is related to a relay transfer charac­
teristic because for a very large standard deviation compared with the 
width 2 . A of the interval considered every symmetrical transfer char­
acteristic acts as a relay function. Moreover, it is evident that a shift of 
the mean e. of the distribution to the limits of the transfer characteristic 
of the FC leads to decreasing input-output correlation of the controller. 
The extreme point is reached when the largest part of the distribution 
is covered by one of the branches at which the control output is always 
a constant value. For this case we obtain He.v. ~ O. 

Optimal input scaling actually means: searching for an optimal U e. 

with respect to the interval [-A,+A] of the Fe between its limits. We 
assume the optimal scaling for the following case: 
We start the searching procedure with a large Se (which means a large 
ue• = ue.lmaz). Then, keeping U e• constant, we change e. stepwise by 
adding !.'le. to e, which corresponds to a shifting of the distribution of 
the input signal alo~g the e.-axis. The result is a curve H(e., ue.) with 
a single maximum R(e., ue.)lmaz with 

(14) 

and 
U e• = const. 
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as :'l 
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a~ 

Se R-1-a 

Figure 4: Block scheme for tuning of scaling factors 

After that we decrease (T e, by f).(T e, and change the result R( e., (T e, -
f).(T e.) in the same way. Because of the monotonicfunction R( e., (T eJI •• =con.t 
we obtain a higher maximum R( e., (T e,) Imax as before: 

We stop the searching procedure at 

R(e., (Te.) 2: 1 - a 

(15) 

with condition (14) where a E (0,1) is a free parameter. If condition 
(14) is not fulfilled we obtain a plateau. In this case the domain of 
the Fe is assumed to be insufficient with respect to the given standard 
deviation (Te,. Hence, one has to increase the scaling factor Sc until (14) 
is met. Figure 3 shows a typical R( e., (T e, )-plot and fig. 4 shows the 
corresponding block scheme. 
We choose the free parameter a such that for a linear Fe characteristic 
between the upper and lower limit the standard deviation (T e, of the 
scaled signal e. is set equal to the interval A of the controller: 

(16) 

This means, we have an input signal probability P = 0.68 for the 
linear region of the Fe. However, if the characteristic of the controller 
between its limits is nonlinear (see fig. 2) one obtains automatically 
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~ Sc such that U e• < A. Namely, it is clear that the cross-correlation 
R as a linear operation meets its maximum value when, for a given 
standard deviation U e., the function between the limits of the transfer 
characteristic of the FC is linear. If the function between the limits is 
nonlinear one obtains for the same U e. a lower value for R. This, however, 
corresponds to a smaller standard deviation U e , and, with this, a smaller 
scaling factor Sc if a linear function between the limits is assumed. 

a) 

b) 

Figure 5: FCs with linear (a) and nonlinear (b) characteristics 
between the lower and upper limits 

Numerical example Suppose a standard deviation U e = 1 of the 
input signal e(t). For a FC with a linear characteristic between the limits 
as shown in fig. 5a) we obtain R(e.,ue.)q •• =lO = 0.95 and a = 0.05. 
This corresponds to a scaling factor Sc = 10 and the scaled standard 
deviation ue• = 10. For a FC with a sinusoidal characteristic as shown 
in fig. 5b) we obtain for the same a = 0.05 a scaling factor Sc = 7 and 
the scaled standard deviation U e. = 7 . 

3 Application to a redundant manipulator 
arm 

The application sample of this section deals with the control of the kine­
matic of a redundant robot arm (the inverse task) whose static transfer 



Input Scaling of Fuzzy Controllers 39 

characteristic is highly nonlinear but, in contrast to this, whose internal 
dynamics consists of a simple dead time element or a delay. Contents 
of this section is, however, not to describe the whole problem of solving 
the inverse task in the case of kinematical redundancy. This has already 
been discussed at [Palm 92a] in detail. In the following, only the aspect 
of appropriate tuning of the input scaling factors required for kinemati­
cal control of the robot arm is considered. 
In section 2 it has been shown that a shift of the mean value of an input 
signal leads to a reduction of the correlation coefficent. The following 
example deals with input signals whose signs do not change during the 
control process. Moreover, the input scaling factor does not only affect 
the standard deviation but the mean value, too. The task is the optimal 
choice of scaling factors so that the distribution of the corresponding 
input signal is located within the corresponding operating area of the 
FC. The basic assumption is that an optimal scaling factor is obtained 
when the statistical input-output dependence meets its maximum: 

To be independent of any change of sign in the control loop the absolute 
value of R has been chosen. The problem of kinematical control of a 
redundant manipulator arm can be simply described as follows: The 
effector (gripper, tool) of the planar robot arm is supposed to follow a 
predefined path (see fig. 6). The robot kinematic is constructed in such 
a way that the individual links of the manipulator are able to avoid both 
external obstacles and internal restrictions (e.g. boundaries of the links). 

In the special case the motion of each link is, in addition to the given 
effector task, determined by 

1. distance h between link and middle position, 

2. distance s between link and wall, 

3. distance d between link and obstacle. 

The distances h, s and d are evaluated by fuzzy attributes (e.g. s=Positive 
Small) and their membership functions. For each link a fuzzy rule base 
provides the corresponding correction of the joint angle. The actions z 
(angle corrections) of each link are evaluated also by fuzzy attributes 
(e.g. z=Positive Big angle correction). Although the process to be con­
trolled is highly nonlinear in the large it can be considered as linear for 
small angle corrections. The distances h, sand d are scaled so that they 
fit the predefined normalized universes of discourse. 
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waI 

Figure 6: Motion of a redundant robot arm 

For the internal restriction "Scaled distance between the i-th link 
and its middle position" hiN = h yields 

h negative big: HNB=(I'HNB(h)/h), 

h negative small: HNS=(J.lHNS(h)/h), 

h positive big: HPB=(I'HPB(h)/h), 

h positive small: HPS=(I'HPS(h)/h), 
VhE H. 

For the external restriction "Scaled distance between the i-th link and 
some wall" SiN = S yields 

s big: SIB = (J.lSIB(S)/S), 

s small: SIS = (J.lSIS(S)/S), 

"Is E S. 

For the external restriction "Scaled distance between the i-th link and 
some obstacle" diN = d yields 

d big: DIB = (J.lDIB(S)/S), 

d small: DIS = (I'DIS(S)/S), 
VdED. 
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For the "Scaled output" Zi = Z according to the i-th link yields 

Z negative big: ZNB=(JlZNB(h)/h), 

z negative small: ZNS=(JlZNS(h)/h), 

z negative zero: ZNZ=(JlZNZ(h)/h), 

z positive big: ZPB=(JlZPB(h)/h), 

z positive small: ZPS=(Jlzps(h)/h), 

z positive zero: ZPZ=(Jlzpz(h)/h), 

'Vz E Z. 
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All membership functions Jl vary only within a predefined standard in­
terval h, s, d, Z E [MAX, MIN]. Outside this interval the value of J1. is 
either 0 or 1. Furthermore, all fuzzy sets are normal, i.e. there is an 
h, s, d or z with a corresponding J1. = l. 

To obtain an appropriate motion for each link the following set of 
rules has been applied: 

IF (SIS AND DIS AND (HNS OR HPS» OR (SIS AND HNB AND DIB) 

THEN ZNZ 

IF (SIS AND HPB AND DIS) OR (SIB AND HPS AND DIB) 

THEN ZNS 

IF {SIS AND DIB AND (HNS OR HPS)) OR ({SIS OR SIB) AND HPB AND DIB) 

THEN ZNB 

IF SIS AND HNB AND DIS THEN ZPZ 

IF {SIB AND DIS AND (HPS OR HPB» OR (SIB AND HNS AND DIB) 

THEN ZPS 

IF {SIB AND DIS AND (HNS OR HNB)) OR (SIB AND HNB AND DIB) 

THEN ZPB 

The scalar output value has been computed by the center of gravity: 

Jzz",u Z • Jlzdz 
ZN - ~"'~'''=------ JZ"'''z d z", ... Jlz z 

Within the rules for the operations AND and OR the MAX and MIN 
operator, respectively, have been chosen. 

The correlation coefficient R for discrete points of time has been 
applied concerning the distance s between each link and the wall: 

(17) 
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Figures 7 and 8 show the change of the correlation coefficient R where 
Ss is the scaling factor for distance s. 

The other scaling factors are Sh = 20 and Sd = 120 (see fig. 7). The 
peak of R is lying at about Ss = 80. Figure 8 shows a similar situation 
for Sh = 100 and Sd = 60. The peak of R lies at Ss = 80 again. The 
result is: Although there is a certain change in the curvature of R(ss), 
depending on a different choice of the other scaling factors Sd and Sh, 

the abscissa of the maximum value of R does not change. This finally 
illustrates the independence of the location of the maxima of different 
correlation coefficient curves. 

4 Conclusion 

Many control applications show that most fuzzy controllers are designed 
in such a way that the universes of discourse concerning the membership 
functions used are normalized according to a standard interval. This 
leads to the task of an appropriate choice of scaling factors for inputs 
and outputs. Together with an appropriate adjustment of membership 
functions Input/output scaling forms a tuning hierarchy in which in­
put scaling gets the second priority after tuning the output scalings and 
before tuning the membership functions. Optimal adjustment of input 
scaling factors serves as a mean to influence the basic sensitivity of the 
controller and is the basis for the relevant utilization of the operating 
areas of the input signals. The basis of the method is a well-known ap­
proach of the nonlinear control theory where under certain conditions 
for Gauss-distributed input signals a nonlinear control element can be 
imaginarily replaced by the so-called equivalent gain which is closely re­
lated to the input-output cross-correlation coefficient of the controller. 
The claim of the method presented is that for a stationary input signal a 
certain amount of its amplitudes should be linearily transmitted through 
the FC. Under the condition that the system to be controlled is approx­
imately a lowpass filter one is able to adjust the input scaling factors at 
run-time measuring the cross-correlation coefficient. Another case comes 
up if the distribution of the regarding input sigDal is known. In this case 
a tuning procedure becomes pointless and one is therefore able to design 
the input scaling factors from the beginning so that the conroller meets 
its input sensitivity required. Once, however, either mean or deviation 
of the input signal is unknown tuning with respect to the procedure de­
scribed is justified. 
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Figure 7: Simulation results for Ss with Sh = 20 and Sd = 120 

o.s t:R 

-1.0 

Figure 8: Simulation results for Ss with Sh = 100 and Sd = 60 
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In an example it is shown that the kinematical configuration of a re­
dundant robot arm is controlled by means of a set of fuzzy rules. This 
example shows the applicability of the correlation method for the ad­
justment of input scaling factors in the MISO-case even if the system to 
be controlled is highly nonlinear. 
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2.3. How to Store Efficiently a Linguistic 
Rule Set in a Fuzzy Controller 

K.-D. Meyer-Gramann 

Abstract 

A fuzzy controller can determine its output values either by 
evaluating a fuzzy look-up table or by interpreting directly its 
linguistic rule set. Sometimes the second way has advantages. In 
this case a method has to be derived to store the rule set in the 
actual runtime environment such that the controller can 
interprete it sufficiently fast at run-time. 

In this article a fundamental solution of this task is 
presented. The original rule set is transformed by replacing rules 
with an identical conclusion by one single rule. If necessary, the 
premise of such an integrated rule is reformulated such that 
each rule premise has a standard structure - an OR-connection 
of AND-connections of linguistic values. A standard structure 
premise is coded as a matrix with integer-valued elements. It is 
shown in detail how to code a premise and what are the storage 
requirements of this method. 

It is demonstrated how the controller calculates its output 
values during run-time. For each sample point it determines the 
truth value of each linguistic rule premise by evaluating its 
corresponding premise matrix. 

Fuzzy control was implemented with the help of standard 
functional units of an automatization language. This approach 
integrate the novel technique of fuzzy control into an 
automatization environment. As an application of the introduced 
storing method, it is shown how one can realize the presented 
approach by additional functional units. 
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1 Introduction 

How to implement a fuzzy controller? 

The most fuzzy controllers are implemented as pure software 
programs of a high-level language like C or PASCAL. The 
controller design tools being available on the market typically 
yield source code of such a programming language. The software 
solution is very flexible which is advantageous when the 
controller has to be changed. But it may require too much 
memory space or may run too slow. As an alternative solution, 
one can apply dedicated fuzzy hardware in order to obtain a very 
fast controller. But this specific hardware solution can often 
hardly be integrated into the existing control environment. In 
addition, it may be difficult to configure and maintain such a 
controller. One may depend on a single hardware vendor. 

A third way to implement a fuzzy controller is to use standard 
functional units of a common automatization language. The 
engineer configures the controller with the help of a given set of 
standard functional units which is offered by the engineering 
tool. The set contains units for the "fuzzification", the fuzzy 
inference engine, and the defuzzification as well as data units for 
storing the linguistic rules and the membership functions. 

No matter what method of implementing a fuzzy controller is 
chosen - one has to find a way which enables the fuzzy controller 
to perform the run-time evaluation of the linguistic rules. Two 
different approaches are suggested in the literature and are 
realized by commercially available engineering tools. The 
approaches describe how a fuzzy controller calculates its output 
value(s) as a function of its input value(s) during run-time: 
o The fuzzy controller evaluates the linguistic rule set directly. 
o One exploits the property that the behavior of a fuzzy 

controller is uniquely determined by its control surface: An 
output value for time t only depends on the input values for t 
but not on any previous input value or any other output 
value. A fuzzy controller itself has no memory and no 
feedback capability. When having designed and validated the 
controller, one creates a so-called "fuzzy look-up table" which 
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determines for each characteristic input value vector the 
corresponding output value vector. At run-time the controller 
evaluates this fuzzy look-up table instead of the rule set itself. 

If the fuzzy controller only has few input variables, the 
utilization of a "fuzzy look-up table" is often the most suitable 
way. But if it possesses of a lot of input variables, the controller 
can not evaluate the table fast enough as it is too big. Perhaps 
the fuzzy look-up table does not approximate the control surface 
sufficiently. An additional drawback of a "fuzzy look-up table": It 
is not possible to adjust and validate a fuzzy controller 
evaluating a look-up table "on-line" at the system to be 
controlled - when having changed any rule or any membership 
function the fuzzy look-up table has to be updated again. 

Therefore one often is restricted to the first approach. One 
has to solve the task to store the linguistic rule set in the 
available hardware environment. This rule set may consist of 
numerous rules as being demonstrated by the following 
example: Let the fuzzy controller have three input variables and 
let five linguistic values be defined for each input variable. A 
complete rule set may have up to 53 = 125 rules. "Complete" 
means that for each possible combination of linguistic values of 
different input variables one has defined a linguistic rule having 
this combination or a subset of it as its premise. 

A large-sized rule set can not be stored "any old how" but only 
sophisticated - particularly if only few storage space is available. 
This may be the case if one is restricted to a small and cheap 
stored-programable control unit. An additional requirement is 
that the controller must evaluate the rule set sufficiently fast. 

2 A Way to Store a Linguistic Rule Set 
Efficiently 

Let us consider a fuzzy controller with n input variables 
Xl, ... .xn and one output variable Y. The limitation to one output 
variable is not a real restriction: One can replace a fuzzy 
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controller with m output variable-s by m controllers each having 
one output variable. We assume that the premise of each 
linguistic rule is an AND-OR-combination of linguistic values of 
different input variables. An example of such a premise is: 
X I is 'very big' OR [X I ist 'big' AND X2 ist 'small']. 
Each conclusion is a single linguistic value of the output 
variable Y. A rule which has a conclusion consisting of several 
linguistic values of Y is replaced by several rules each having a 
single value as its conclusion. If this procedure fails, one defines 
an additional linguistic value of Y replacing the combination of 
linguistic values ofY. 

The first basic idea is to integrate all rules having identical 
conclusions into one single rule. The premise of this rule joining 
different rules is transformed to a "standard structure": After this 
transformation the premise has the structure 
ST I OR ST2 OR ... OR STk , 
where for r = l, ... ,k the statement STr 
o is either a single linguistic value of an input variable 
o or an AND-connection of linguistic values of pairwise different 

input variables. 
If necessary a distributive law is applied. An example: The 
premise 
X I is 'very big' AND [X2 is 'big' OR X2 is 'medium'] 
is equivalent to the standard structure premise 
[Xl is 'very big' AND X2 is 'big'] OR [Xl is 'very big' AND X2 is 
'medium']. 

This transformation is not possible if a rule is defined which 
has a premise with an AND-connection of different linguistic 
values of the same linguistic variable. An example is the premise 
'Xl is 'very big' AND Xl is 'small' ". Therefore we assume that the 
engineer avoids such premises. To formulate such a premise 
does not appear to be useful anyhow. 

Let A(l), ... , A(L) be the linguistic values of Y. After having 
transformed .the original rule set one obtains a set of L linguistic 
rules. Let k(l) denote the number of OR-connections in the i-th 
rule premise. For i = 1, ... ,L the i-th rule has the standard 
structure: 
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IF [ST 1 OR ST 2 OR ... OR ST k{i)1 THEN [ Y = A (i)]. . 
In order to simplify the followmg description we assume that k(l) 
>= 1 holds, i. e. each linguistic value of Y occurs at least once in 
a rule's conclusion. Of course we allow the case k(i) = 1 which 
means that no OR-connection occurs in the i-th rule premise 
but only one single linguistic value or one AND-connection does. 

The second basic idea is to keep the rule premises and the 
rule conclusions seperate when storing the linguistic rule set. 
The linguistic values ofY are numbered, for example from I to L. 
With the help of these numbers the premise of a rule can be 
associated with its conclusion. The conclusion is characterized 
by a membership function for a linguistic value of Y; this 
membership function has to be stored. But how to store a rule 
premise having the standard structure described above? 

The linguistic values of each input variable are coded 
seperately. Let Ilj denote the number of linguistic values of ~. 
Practically one numbers the values ofXj from 1 to Ilj. 

Let ST 1 OR ST 2 OR ... OR ST k be a linguistic rule premise 
which is to be stored. For r=1, ... ,kST is either a single linguistic 
value or an AND-combination of ~stic values. The number of 
input variables is n. ST is stored as an n-dimensional vector 
(p 1' ... ,p ) of nonnegati~e integers: p . = s means that the s-th 
mfgwsti~alue of ~ occurs in ST r- .A1 we restrict ourselves to 
rule premises having the standard structure, ST possesses one 
linguistic value of ~ at the most. If no lingui~tic value of Xj 
occurs in ST , p . = 0 is assigned. By performing this coding 
method for ~l,~.,k, one obtains k vectors each having n 
elements. They are integrated into a k x n - matrix (k rows, n 
columns). The r-th row represents the combination ST and the 
j-th column is assigned to the j-th input variable ~. r 

As the output variablf) Y has L (~stic values, this procedure 
yields L matrices p( , ... , P which are denoted "premise 
matrices" in the following. 

The following simple example illustrates this coding method. 
Let the fuzzy controller possess two input variables Xl and X2. 
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'Three linguistic values are defined for X 1 as well as for X2. The 
linguistic values of Xl are: ''Xl is 'small' ", ''Xl is 'medium' ", and 
''Xl is 'big' ". Those ofX2 are: ''X2 is 'small' ", ''X2 is 'medium' ", 
and ''X2 is 'big' ". These linguistic values are numbered from 1 to 
3 in this order. 
The first linguistic value of Y is 'ry is 'very small' ". This value 
occurs in the conclusions of the following rules of the original 
rule set: 
IF ''Xl is 'big'" THEN 'ry is 'very small' " 
IF ''X2 is 'small' " THEN 'ry is 'very small' " 
IF ''X 1 is 'small' " AND ''X2 is 'medium' " THEN 'ry is 'very 
small' ". 
Trnsforming the rules into the standard structure yields this rule 
for the first linguistic value ofY: 
IF [ST OR ST OR ST ] THEN 'ry is 'very small' ", 
where ST = ,.)t1 is 'big~", ST = ''X2 is 'small' .. , and ST 3 = ''X 1 is 
'small' ~D X2 is 'mfffum' ~ 
The premise matrix P , which contains the premise of this rule, 
is a 3 x 2 - matrix with the elements 

3 0 
p(l) = 0 1 

1 2 

The complete linguistic rule set consists of L rules. The 
pre~ses ~l)these mes ar~_ stored withi the help of L premise 
matnces P , ... , p . For 1-1, ... ,L let k() denote the n~ber of 
O~-connections in the i-th rule premise. Therefore p\lJ is a 
k(l) x n - matrix. After th~ enginE1ff has defined the linguistic 
rule set, the matrices pll J, ... , p\ are calculated and can be 
utilized by the fuzzy controller at run-time. 

In the following we determine exactly the space required for 
storing a linguistic rule set in the manner just described: 
o The membership functions for the linguistic values of the 

input variables are to be stored. This takes the space for n 1 + 
... + nn membership functions. 

o L membership functions for the L linguistic values of the 
output variable Y must be stored. 

o The L matrices for the linguistic rule premises require 
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L (i) 
- the space for L k * n nonnegative integers 

i=l 
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- and L times the space for storing the structure, address, 
and size of a matrix. 

In practical applications the engineer typically only defines 
few linguistic values of an input or output variable. It seems not 
to be a real restriction to demand that he / she only defines 7 
different linguistic values for each input variable at the most. If 
this limitation is followed, each element of a premise matrix is an 
integer of the set {O,I, ... ,7}. Storing this element takes exactly I 

L (i) 
byte. Therefore it requires L k * n bytes to store all premise 

i=l 
matrices. 

How to store efficiently membership functions? In the most 
practical applications one restricts oneself to trapezoidal 
membership functions including indicator functions, triangular, 
and shoulder functions. Every trapezoidal membership function 
can be stored memory-saving with the help of four real numbers 
xl <= x2 <= x3 <= ~ determined such that ll(xI) = Il(~) = ° and 
ll(x2) = ll(x3) = I holds. 

3 Run-Time Evaluation of the Linguistic 
Rule Set 

For each time t at nln-time the fuzzy controller has to 
determine the real number y(t), the output value for t. The value 
y(t) depends on xI(t), ... , Xn(t), the input values for time t. In 
order to calculate y(t), the fuzzy controller interpretes the 
linguistic rule set. When utilizing the original fuzzy control 
mode, a fuzzy controller performs this task in the following way: 
(1) For j = l, ... ,n let l1j be the number of linguistic values of 

the input variable x·. 
Let III (j), ... , Iln·(j) be the membership functions for these 
values. Let T b~ the t-norm selected for calculating AND-
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connections and let U be the t-conorm for OR-connections. 
Let N denote the number of linguistic rules. 
The fuzzy controller calculates the numbers Ct)l(t), ... , Ct)N(t) 
where for i= 1, ... ,N Ct)i (t) is the truth value of the premise of 
the i-th rule. Ct)i(t) depends on the premise, on the 
membership d~grees J.1 (j)[x4t)J, ... , J.1n.(j)~(t)J (j & {l, ... ,n}), 
and of the Cholce of T ~d U. :J 

(2) Let v( 1) , ... , v(L) be the membership functions for the 
linguistic values of Y. The selected fuzzy inference 
mechanism is characterized by a function F : [0,1] X [0,1] 
~ [0,1]. Besides other functions the usual minimum 
function, the algebraic product, and Godel's implication are 
utilized by fuzzy controller. 
For i = 1, ... ,N let. Ct)i(t) be the truth value of the i-th rule 
premise. Let v(Sil be the membership function for the 
conclusion of the i-th rule where Sj &{l, ... ,L} for i &{l, ... ,N}. 
Evaluating the i-th rule yields the membership function si t 
mth ' 
si t(y) = F[ ffii(t) , v(s:il(y) ] for y £ Wy where Wy is the domain 
ory. 
If one integrates rule mth identical conclusions into one 

rule, N = Land s. = i fUr i & {l, ... ,L} holds. 
1 

(3) With the help of the t-conorm U the N membership 
functions sl t ' ... , SN t were summarized to one single 
membership 'function St.' 

(4) The fuzzy controller calculates the output value y(t) by the 
"defuzzification" of St. 

The "defuzzification" is that subtask of one calculation step 
which consumes the most run-time. In order to avoid run-time 
defuzzification, different authors have suggested a pre­
defuzzification, cf. [1, 5, 6, 7], e. g. 
The basic idea of pre-defuzzification is: The membership 
functions vII) , ... , v(L) are already "defuzzified" after having 
crea~ed the fuzzy controller ffld not d~ run-~e. By this ~ne 
obtains L real n~bers A , ... , A( ). For l-l, ... ,N the l-th 
cQ~~lusion ''Y = v "is replaced by the cnsp conclusion "Y = 
A\SiJ" . At run-time the fuzzy controller determines its output 
value by utilizing the formula 
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N N 

y(t) = L Wi (t) * A (S;) / L Wi (t) . 
i=1 i=1 

In [5] a combination of plausible conditions is presented which 
N 

guarantees that L Wi (t) always equals 1. 
i=1 

Sometimes the alternative formula 
N (i) (i) N (i) 

y(t) = L wi(t)*area * A / L (Vi(t) *area 
i=l i=l 

is applied where area(i) is the area of the membership function v 
(i) 

In chapter 2 a mechanism for storing a linguistic rule set is 
described. 1bis mechanism can be utilized for both basic 
inference modes. After being transformed into the standard 
structure, N = L holds. The fuzzy controller performs the work of 
step (1), i. e. the calculation of rol(t), ... , roLlt), in three partial 
steps: 
(1.1) It "fuzzifies" the n input variables, i. e. it calculates for 

j=l, ... ,n the present membership degrees of "lIt) to all 
membership functions representing linguistic vaI'ues of X;. 
By this the fuz~ controller calculates the vector {Ill (j)6cj (t1] 
, ... , Jln.(j)~(t)] }. 

(1.2) It arrart'ges the membership degrees according to the. rule 
premises: At run-time it calculates for i = 1, ... ,L the kIll x n 
- matrix A(i)(t) applying the formula: 
<X.xj(~)(t) = 1. ' if PIj(i) = q and 
<X.xj(~)(t) = Ils(j)(tL ' if s:= Prj(l) > O. 
<X.xj(l)(t) and Pti(l) are the integer:-valued elt;ment of the r-th 
row and the j-th column of A(l)(t) and p(l), resp. Whereas 
the controller calcula~es A(l)(t) for each sample point again, 
the premise matrix pIll has already been created before the 
run-time and is not changed at run-time. 

(1.3) For i = 1, ... ,L the controller calculates the truth value roi(t) 
of the i-th rule premise according to 
roi(t) = U [ Sl (i)(t) , .:. , Sk(i)(i)(t) ], 
where for r = 1, ... ,k(l) 
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s (i)(t) = T [<Xrl (i) (t) , ... , <X.rn(i)(t) ] 
it the truth value of the r-th partial statement in the 
premise of the i-th rule. 
In the first step the fuzzy controller applies the t-norm T to 
each row of A(i)(tl: In the second step it applies the t­
conorm U to all k(l) numbers obtained by the first step. If 
one selects the t-norm "algebraic product" and the t­
conorm "algebraic sum", it holds: 

(i) 
k n IT (i) 

Ct)i(t) = I arj (t). 
r=l j=J 

Fig. 1 illustrates the work of the fuzzy controller. 

Let us consider the simple example of the previous chapter. Let 
xl(t) and x2(t) be the present input values. The partial step (1.2) 
yields: 

A(l) = 

I 

J.tl (2)lx2(t)] 
112 (2)[X2(t)] 

By partial step (1.3) the expected result is obtained: 
Ct)l(t) = U {1l3(1)lx l (t)], III (2)lx2(t)], T[ III (l)lxl(t)], 1l2(2)lx2(t)] ]} 
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Fig. I. Determination of the truth values rol(t), ... , rodt) by 

evaluation of the premise matrices p( 1), ... , p(L) 
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4 A Possible Application: 
Standard Functional Units 

Often one plans automatization systems by configuring them 
with the help of standard functional units of an automatization 
language. For the automatization languages DOLOG AKF (from 
the AEG) as well as for Step 5 (from Siemens) such standard 
functional units for fuzzy control are now available [2, 3, 8]. It is 
intended to realize the approach of this article within the 
language DOLOG AKF . 

Fig. 2 illustates how one can configure a fuzzy controller with 
the help of standard functional units and data units. These 
example controller has three input variables Xl, X2, and X3 and 
one output variable Y. A bold rectangle stands for a functional 
unit and a light-faced one for a data unit. 
o Each membership funtion has a trapezoidal shape. The 

membership functions for the linguistic values of one input or 
output variable are stored together in a data unit of type MF. 
Each membership function is represented by four real 
numbers. If the fuzzy controller has n input and 1 output 
variable, one needs n+l data units of type MF. 

o A premise being coded as described in chapter 2 is stored in a 
data unit of type REG. 

o The standard functional unit FUZZIFY has two inputs: Via the 
input X it receives the present value xi(t) of an input variable 
~. The second input, MF, is connected with the data unit for 
the membership functions for the linguistic values of Xi' The 
output LV yields the present membership degrees of Xj(t) to 
the membership functions as a vector. 

o As the linguistic rule set possesses L rules, the fuzzy 
controller has L standard functional units of type RULE. As 
the fuzzy controller of our example has three input variables, 
every standard functional unit has three inputs LVI, LV2, and 
LV3 for the membership degrees of xl(t) , x2(t), and x3(t), 
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resp. The fourth input REG of the standard functional unit 
RULE is connected with a data unit for the premise of these 
rule. The output LV yields the present truth value coi(t) of this 
premise. 

Xl (1) 
~x -----J LVI 

---)4 ~ LV2 .~ FUZZIFY LV RULE LV 

~ 
LV3 

-4 MF REG 

m (1) (1) (1) 

- l •...• ~ - P 

MF REG 

"2(t) f---t LVI ~x 

~ r--. LV2 w:!! Y~ FUZZIFY LV RULE LV LV COM ... LV3 ... 

~ MF ~ REG r-t MF 

(2) (2) (2) 
(1) (L) m,. •...• ~ - p - '-- n •... ,n 

MF REG MF 

"3(1) H LVI 
~X 

M4~ LV2 wjt) 

FUZZIFY LV RULE LV ~ ~ LV3 

~ MF ---t REG 

(3) (3) (3) 
'--- IIIt •...• lIb3 -

p 

MF REG 

Fig. 2. An example for configuring a fuzzy controller WIth the 
help of startdard functional units and data units. 
Bold rectartgles: standard functional units 
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o The present truth values (i)1(t), (i)2(t), and (i)3(t) are combined 
to a vector ( LV[I], LV[2], LV[3] ). 

o The standard funtional unit COM ("center of maximum") 
performs the "defuzzification". Via the input LV it obtains the 
present truth values of all premises, via the input MF the 
membership functions for the linguistic values ofY. 

The solution just presented requires a specific standard 
functional unit for each number n being a possible number of 
input variables. This standard functional unit has n inputs LVI, 
... , LVn. The standard functional unit of fig. 2 can only be used 
for controllers with three input variables. 

If one wants to utilize the data units of type MF and those of type 
REG for all possible numbers of input variables, one should 
store the present number of input variables in the data units. 
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2.4. Learning the Rule Base of a Fuzzy 
Controller by a Genetic Algorithm 

Jorn Hopf and Frank Klawonn 

Abstract 

For the design of a fuzzy controller it is necessary to choose, 
besides other parameters, suitable membership functions for the 
linguistic terms and to determine a rule base. 
This paper deals with the problem of finding a good rule base 
- the basis of a fuzzy controller. Consulting experts still is the 
usual but time-consuming and therefore rather expensive method. 
Besides, after having designed the controller, one cannot be sure 
that the rule base will lead to near optimal control. This paper 
shows how to reduce significantly the period of development (and 
the costs) of fuzzy controllers with the help of genetic algorithms 
and, above all, how to engender a rule base which is very close to 
an optimum solution. 
The example of the inverted pendulum is used to demonstrate 
how a genetic algorithm can be designed for an automatic con­
struction of a rule base. 
So this paper does not deal with the tuning of an existing fuzzy 
controller but with the genetic (re-)production ofrules, even with­
out the need for experts. Thus, a program is engendered, consist­
ing of simple "IF ... THEN . .. » instructions. 

1 Introduction 

63 

In opposition to classical control techniques, which are mainly based on 
a mathematical model of the process to be controlled, the idea of fuzzy 
control is to model the behaviour of a (hypothetical) operator who is 
able to control the process. When the basic principles of the process 
and the reaction caused by the control actions are well understood, it is 
possible to design a reasonable control strategy using "IF . .. THEN . .. " 
rules. But in most cases it is necessary to consult an operator who is 
able to control the process and who has an intuitive understanding of the 
behaviour of the process. However, the knowledge acquisition process is 
often very difficult, since the operator is not always aware of all the rules 
he uses and might not be able to formulate an appropriate description 
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of his control strategy. Therefore, a rule obtained from an operator 
might not work as well as expected. In some cases it is even impossible 
formulate a rule base, e.g. when a new process is to be controlled and 
no competent operator is available. 

In this paper we propose the application of genetic algorithms to the 
problem of the design of a rule base for a fuzzy controller without the 
use of a priori information or the help of an operator. 

The quality of the controller working with the rule base determined 
by the genetic algorithm depends on the choice of the evaluation function 
used in the genetic algorithm. In this way, we can prescribe the desired 
quality of the fuzzy controller to be generated. 

The "IF ... THEN ... " rules appearing in the rule base of a fuzzy 
controller form an algorithm. Unlike a C-program, such an algorithm 
can be engendered by a genetic algorithm. The possibility of using an 
evolutionary process has its roots in the independence of these program 
modules. In genetic terms: changing the genotype does not affect the 
determination of the algorithm, what happens is only a phenotypical 
alteration - a changing of the algorithm's behaviour. The used language 
of a reduced instruction set code: 

program 
clause 
expression 

Limited to: 

clause 
expreSSIOnl 
expreSSlon2 

clause [clause ... ] 
IF expression THEN expression 
variable is fuzzy-set [and expression] 

IF expressionl THEN expression2 
expression2 and expression2 
variable is fuzzy-set 

2 The Control Problem 

We consider the following control problem known as the inverted pendu­
lum. A pole has to be balanced on a cart to be moved in the horizontal 
direction. A mass is fixed at the end of the pole. We neglect the frictional 
resistance here. The goal is to balance the pole by applying some force 
to the cart accelerating it. The force should be determined by the actual 
angle and angular velocity of the pole. The movement of the pendulum 
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follows the differential equation 

2" '2 (m + M . sin 0). I . 0 + M . I . sin 0 . cos 0 . 0 - (M + m) . 9 . sin 0 

=-F·cosO 

where 9 is the gravitational constant, I the pole length, M the mass at the 
head of the pole, m the mass at the foot of the pole and -900 ~ 0 ~ 900 

is required. 
The two .parameters to be optimized are the angle 0 and the angular 
velocity O. 

We use a Sugeno fuzzy controller (see f.e. [Kruse et aI., 1994]) to 
solve this control problem. The fuzzy sets for the fuzzy controller are 
denoted as usual with Negative-Big (NB), Negative-Medium (NM), Zero 
(ZE), Positive-Medium (PM) and Positive-Big (PB). The membership 
functions of all fuzzy sets are chosen as triangular functions and are 
uniformly distributed over the universe of discourse. For the output of 
each rule we chose a fixed value which we also associated with a linguistic 
expression of the above mentioned type. 

3 How a Genetic Algorithm Works 

Genetic algorithms represent a strategy to search efficiently for near op­
timal solutions in difficult search spaces. Each solution is represented by 
one individual of a whole population. New solutions can be engendered 
by combining selected old solutions. 

To solve a problem, a genetic algorithm requires five components: 
[Davis, 1987] 

1. A representation of the solution to a problem in the form of a chro­
mosome (chromosomal representation). 

2. An initial population of individuals (solutions). 

3. An evaluation function which indicates the fitness of each individ­
ual. This fitness shows how well the individual is able to cope with 
the given environmental factors. 

4. Genetic operators which determine which genes of which parent 
will be passed on to their offsprings in the process of reproduction. 

5. Parameters, as there are: the size of the population and probabil­
ities employed by the genetic operators. 
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NBoNB NBoNM NBoZE 

. .. I PBoZE I PBoPM I PBoPB I 
Figure 1: Chromosomal representation of the solution 

A population corresponds in our application of genetic algorithms to 
fuzzy control to a family of rule bases. The initial population is chosen 
randomly. 

The two most important genetic operators are mutation which means 
in our application of genetic algorithms to fuzzy control modifying a rule 
base by random, and crossing over, a recombination of two 'parent' rule 
bases. For a detailed discussion of these operators see f.e. [Beightler 
et aI., 1979], [Davis, 1987], [Dewdney, 1986], [Goldberg, 1989], [Holland, 
1992] and [Michalewicz, 1992]. 

3.1 Genetic Encoding of the Possible Solutions 

To solve a problem with the help of a genetic algorithm it is first of all 
necessary to encode a general solution of the problem in a chromosomal 
representation. This representation has been chosen in correspondence 
with our 2-dimensional rule panel. Transferred to a I-dimensional rep­
resentation a rule base looks as shown in figure 1. Each box stands for 
one gene and is indexed with the premise of its corresponding rule in 
figure 1. The possible alleles (values) for each gene are the linguistic 
expressions for the output value in the rule base of the fuzzy controller. 
Note that we refrain from a binary representation here. 

It is now the task of the genetic algorithm to fill out the rule base 
in figure 2 in a way that it contains the appropriate rules. The fuzzy 
controller on the basis of these rules must be able to hold the pole in the 
upright position both as quickly as possible and with the least possible 
deviation. 

3.2 Generating the Initial Population 

Many conventional optimization/search procedures use only one single 
starting point. Its position in the search space determines the next step 
which again leads us to another single point. This method, however, 
incorporates the following problem. When a local optimum has been 
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found the global optimum might remain inaccessible, as the algorithm 
would have to give up the local optimum found before. 

A genetic algorithm starts with a randomly generated initial pop­
ulation of possible solutions, i.e. a genetic algorithm relies on a set of 
starting points. In our case each chromosome represents a complete rule 
base for the fuzzy controller and determines the individual's position 
within the search space. Some may sit in a low valley (poor solutions 
to the problem), others may be found on high mountains (good solu­
tions). Thus, to search efficiently, the starting population should be 
spread evenly over the entire space. 

First - and according to expectation - none of the individuals with 
its chromosomes will be able to solve the problem (holding the inverted 
pendulum upright) sufficiently. Now, before selecting and reproducing 
these individuals, the fitness of each individual must be determined by 
an appropriate evaluation function. 

3.3 Evaluation 

The evaluation function indicates the fitness of each individual (rule 
base) of the population and must be designed in such a way that the 
fittest individuals take part in the process of reproduction. 

Along with an appropriate coding the evaluation function decides 
on the success of the genetic algorithm, see [Beightler et al., 1979], 
[Davis, 1987], [Dewdney, 1986], [Goldberg, 1989], [Holland, 1992] and 
[Michalewicz, 1992]. 

Each genetic algorithm requires a specific choice of the evaluation 
function taking the following aspects into account. 

• For an evaluation function it is essential to assign high values to 
chromosomes that represent good solutions. 

• On the other, an inhomogeneous gene pool with enough variety 
to find (near) optimal chromosomes (solutions) should be kept. 
Therefore, if the evaluation function favours good (but by far not 
optimal) chromosomes too strong against average chromosomes, 
the genetic algorithm will get stuck at some unsatisfactory solution. 

Evaluation in this case is a tightrope walk between supporting those 
individuals with high fitness and keeping a rich variety in the gene pool. 
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(!) angle \ (-+) angular velocity 

force" NB NM ZE PM PB 
NB PM NB ZE NM PM 
NM NB NM NM ZE NM 
ZE NB NM ZE PM PB 
PM NM ZE PM PM PB 
PB PB PM PB PB PM 

Figure 2: An engendered rule base 

3.3.1 Evaluation Function for the Inverted Pendulum 

In order to compute the value of the evaluation function for a chromo­
some for the problem of the inverted pendulum we run several times a 
simulation of the inverted pendulum controlled by the fuzzy controller 
on the basis of the rule base associated with the chromosome. For each 
simulation different values for the initial angle and the velocity are cho­
sen. During this simulation score points for the evaluation can be gained 
by the chromosome taking the following criteria into account. 

• A score can only be gained if the pendulum has been hold upright 
during the whole simulation. 

• At the end of the simulation score points are granted for a small 
deviation from the upright position. The interpretation of small 
deviation is narrowed from generation to generation, since in the 
beginning usually no randomly generated chromosome will be able 
to hold the pendulum in the upright position. 

• The time needed to reach a stable upright position of the pendulum 
is evaluated only indirectly by the chosen time of simulation. 

The controller must be able to handle different initial situations. This is 
guaranteed by using a number of randomly chosen initial values for the 
simulation and evaluation. In an illustration, where good solutions are 
located on mountains and bad in valleys, this means an ever changing 
landscape. But although it is unlikely that the individuals are con­
fronted with the same fitness landscape twice, an 'optimal' solution is 
engendered. 
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3.4 Genetic Operators 

Genetic operators simulate changes of chromosomes in nature. Usually 
two operators are considered, namely cross over and mutation. 

3.4.1 Cross Over 

The cross over operator mixes the genes of two chromosomes in the 
phase of reproduction. In genetic algorithms cross over is realized in the 
following way. First of all pairs of chromosomes are selected from the 
population, usually randomly proportional to their fitness determined 
by the evaluation function. The idea of the cross over operator is to 
combine the features, especially the positive ones, of the chromosomes 
by mixing the genes of each pair of chromosomes. In this way new 
chromosomes are generated that replace their parents. Mixing of genes 
is achieved choosing one gene randomly - the cross over point - and 
exchanging the genes of the pair of chromosomes behind this cross over 
point. In order to illustrate the cross over operator we consider the 
(binary) chromosomes 

1 0 1 0 1 100 1 0 1 0 1 0 1 1 100 1 000 1 0 

and 

101 100 1 0 100 1 1 010 100 1 0 1 0 1 0 

The cross over point is chosen behind the 13th gene. Thus the cross over 
operator yields the following two chromosomes. 

1 0 1 0 1 100 1 0 101 0 1 0 100 1 0 1 0 1 0 

and 

101 100 1 0 100 1 1 0 1 1 100 1 000 1 0 

Since chromosomes to participate in cross over are chosen randomly, but 
with a probability proportional to their fitness, better chromosomes have 
higher chances to produce offspring by cross over. 

As a side remark, we should mention that the cross over operator 
described above is the most simple one but also the one yielding the 
worst results [Michalewicz, 1992]. Therefore, we preferred in opposition 
to this one point cross over the two point cross operator where two genes 
are selected randomly and the gene sequences between these genes are 
exchanged. 
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3.4.2 Mutation 

Besides cross over the other genetic operator is mutation. Whereas cross 
over mixes genes of different chromosomes and can in this way combine 
good solutions, mutation changes genes in one chromosome randomly. 
The reason for the use of the mutation operator is the following. 

Mutation avoids the convergence to a population with a homogeneous 
gene pool and thus guarantees for a certain variety of genes. It should 
be emphasized that without mutation chances for a thorough search 
through the space of possible solutions are quite small. If a certain allele 
(value) for one of the genes is not present in the population, this allele 
cannot be generated by cross over. Therefore mutation is a necessary 
operator, even if it supports only a random search, not directly aimed 
to improve individual chromosomes. 

Miihlenbein demonstrated [Miihlenbein and Schlierkamp-Voosen, 
1993] that in most cases it is sufficient to work with a constant mu­
tation rate (probability for changing one gene) of RM = ~ , where n is 
the number of genes per chromosome. 

3.4.3 The Building Block Hypothesis 

The schema theorem (see f.e. [Michalewicz, 1992]) indicates that a ge­
netic algorithm concentrates the search for an optimal solution on cer­
tain subspaces of the space of all possible solutions. These subspaces are 
characterized by schemata, chromosomes with undetermined genes. The 
subspace associated with a schema corresponds to the set of all genes 
that have the same alleles for those genes that are determined in the 
schema. 

The building block hypothesis, derived from the schema theorem, 
states that a genetic algorithm mainly searches in those subspaces that 
are characterized by schemata with a short defining length, low order and 
high fitness. The defining length of a schema is the distance between the 
two outmost determined genes in a chromosome. The order of a schema 
is the number of determined genes. The fitness of a schema is the average 
fitness of all chromosomes in its corresponding search space. 

For our problem - finding a suitable rule base for a fuzzy controller -
it is easy to see that the building block hypothesis is applicable. If a rule 
base should be able to handle a certain situation, only a small subset 
of neighbouring rules is needed. Since the coding of the chromosomes 
maintains at least partly this neighbourhood relation, (partially) good 
rule bases correspond to schemata with a short defining length, low order 



Learning Rule Base by a Genetic Algorithm 71 

and high fitness. Therefore, it is possible to generate an overall good rule 
base from two partially good rule bases by using the cross over operator. 

4 Simulation Results 

The best rule base ( chromosome) obtained after 33 generations with a 
population size of 200 is illustrated in figure 2. Starting the simulation 
with an upright standing pendulum but with a high initial angular ve­
locity the fuzzy controller using this rule base is able to balance the pole 
finally with a deviation of constantly less than one degree. The protocol 
of the simulation run is presented in figure 3, where the values for the 
angle, angular velocity, and the force are shown over the time. Note that 
this result is obtained by learning the rule base alone. The initial fuzzy 
sets remained unchanged. 

The appendix shows a comparison between a fuzzy controller based 
on Lukasiewicz logic [Klawonn, 1992] designed by hand and the fuzzy 
controller obtained from the genetic algorithm. 

Note that the genetic algorithm does only rely on the fitness of a rule 
base. Therefore, it is possible that the gent!tic algorithm finds a well 
working rule base that does not coincide with the rule base one would 
write down from an intuitive point of view. This is one of the reasons 
why the rule base in figure 2 is not symmetric. Some rules also nearly 
never apply and the entry in the table for these rule is not so important 
for the overall evaluation or fitness of the chromosome. This might also 
lead to deviations from the intuitively appealing rule base. 
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Figure 3: Change of angle, angular velocity and force due to a start 
impulse of 6.6 out of the neutral position. 
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Appendix 

The following diagrams compare the action of a fuzzy controller on the 
basis of Lukasiewicz logic (left) [Sommer, 1992] with that of the con­
troller engendered by a genetic algorithm (right). 
Initial values: angle = 40.0°, angular velocity = -2.0 
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2.5. Comparison of Conventional and 
Fuzzy-Control of N on-Linear 

Systems 

Heiko Knappe 

Abstract 

The results of conventional control theory are not really satisfactory 
in cases of non-linear systems of high order with uncertainties in 

parameter and structure. This is mainly due to the necessary 
reduction in order and simplification of the system. A fuzzy 
controller, on the other hand is not based on mathematical modells. 
consequently, it is especially suitable for technical non-linear 
processes for which verbal control strategies are known. This paper 
presents the speed and position control of an elastic two-mass-system 
with slack. A fuzzy controller is compared to the conventional theory. 
A systematical fuzzy controller design as well as the robustness of the 
system conccming uncertainties in parameter and structure are 
researched. 

1 Introduction 

75 

Usually it is not sufficient to merely concentrate on the engine when 
controlling the speed or position of an electrical drive. In reality a totally fix 
connection between drive and machine are not given (figure 1). In a first 
step the ideal situation of a fixed state is assumed. If the results are not 
satisfactory, the elastic shaft connection and possibly other non-linearities 
such as slack or Couloumb friction in transmissions, clutches and bearings 
have to be taken into concideration. Then a modell of an elastic two-mass­
system has to be used. In many situations a fix shaft connection can be 
assumed. When dealing with the control of machine tools or robots the 
system should be modelled with two or even more masses. The more flexlble 
the shaft and consequently the system is, the higher the influence of non­
linearities, friction and slack. 
The consequences are stick-slip limit cycles. Especially in multi-mass 
systems it is almost impossible or demands enormous effort to avoid these 
phenomena with conventional control theory. The position control of a two­
mass system, for example, is based on a ditJerential equation system of 6th 
order when using an J-(integral) state controller. A complete mathematical 
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model becomes impossible as soon as additional information, such as 
information about the production process (e.g. the request profile for the set 
values) is to be considered. In this case, fuzzy logic in combination with 
classical controller design constitues a new possibility for quicker design of 
better controllers. Figure 1 shows the model used for the ~mass system. A 
current- controlled dc-shunt-wound motor is used for the drive. For 
simulation purposes. the motor torque Mil can be used as control variable, 
since it shows a PT.2-bebaviour with a much smaller time constant than the 
mechanical system. Now a model for the two-mass system is designed. 
Based on this model state and fuzzy control concepts for speed and position 
control are developped and compared to each other. It is the goal of the 
project to find design methods for fuzzy controllers and compare the results 
to conventional techniques. 

engine transmisson elastic shaft load 

eM c eA 

~)) tEJ) f"NV'vw)') D j 
M., ';'9. - M.,. ~ ;',9. M, 

d 
Figure 1: Elastic two-mass-system with slacJc 

(model with em elastic connectio" of e"gine and mochi"e i" a" electric drive system) 

For the model of the system the non-linear slack is neglected in the 
beginning The shaft, that connects drive and machine is assumed as 
mechanical torsion spring with the stiffness c and damping d. A system of 
third order is given. The basic equations for drive mass, shaft and machine 
mass lead to the differential equation system for the three state variables ipll' 

ip A and dip. The engine torque Millis the control variable and the load 
moment ML constitutes the disturbance variable. 

2 Design of State Controllers 
The dynamic behaviour of the system is defined by the eigenvalues of the 
closed control loop. With state controllers one has the possibility to obtain a 
defined behaviour by defining suitable eigenvalues for the closed loop (e.g. 
quickly reaching the command variable with defined overshoot or 
asymptotic behaviour without overshoot). The two-mass-system allows an 
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unlimited definition of eigenvalues, since it is totally controllable. For the 
simulation it is assumed, that all states of the system are measurable. 
Otherwise observers have to be introduced. For the design of a state 
controller it is necessary to have a complete state description: 

d c d 
0 f/JM -- f/JM 

(}M (}M (}M (}M . 
/:If/J = 0 -1 /:If/J + 0 ·MM+ 0 ·ML 

d C d 
0 f/J .. - ({I .. 

() .. () .. () .. () .. [1] 

2-mass system 

MC+MD 
YD 

ML 
. 

Mil CPo. 

Figure 2: Non-normalized Signal flow diagramm of the elastic two-mass-system 

2.1 Speed Control 

In a first step a P- (proportional) state-controller for the above system is to 

be defined. The states of the system nt, n2 and llrpt2 are linearly fed back to 

the control variable with the coefficients kl' k2 and k3 • The closed control 
loop leads to a new equation system with a new system matrix A z that fully 
decribes the behaviour of the total system. Now the eigenvalues of the total 
system (of the pilot transfer function) are calculated in dependency of the 
feed-back coefficients kp k2 and k3 • This happens with the help of the 
characteristic polynomina/: 

Nz{s) = det(s.I- A z ) = N _(s) = S3 +S2. ~2 +s· ~1 + ~o [2] 

The coefficients of the controller kt , k2 and k3 are now defined by choosing 
a pilot polynominal and comparing the coefficients of the different 
polynominals with each other. The pilot polynominal defines the 
eigenvalues of the total control system. The desired behaviour of the 
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controlled system is obtained by the choice of suitable eigenvalues. With the 

equation [2] the coefficients of the controller kl' k2 and k) can be expressed 

in dependency of the parameters ;1' ;2 and ;3· The prefiltering factor K. is 
calculated from the condition of the statiODaIY state. In order to obtain an 
asymptotic behavior, for example, a threefold real pole has to be used. 
Consequently the pilot polynominal for the asymtotic borderline case can be 
expressed as: 

N(s) = (s+I/Tr [3] 

The solution of [2] leads to the equations for the coefficients kl' k2' k) and 

K. in dependency of T. The time constant T can be choosen aIbitrarely. The 
closer the threefold pole is to the point of origin or the larger T is defined, 
the faster the system becomes. The limitation for the size of T is, that as 
there is an increase of the necessary adjusting range, the mechanical (e.g. 
maximum permissible torsion angle L\(112) and electrical (e.g. maximum 
engine current) stress to the system also increases. 
In drive theory, often the damping optimum (damping D=O.5) is used for 
controller adjustment From the corresponding pilot polynominal the 
controller coefficients are obtained for the pole definition in the same way: 
Also, in this case, the above described conditions for the definition of the 
time constant T of the speed control loop have to be considered. Since the P­
state controller does not have an integral part, it is not stationary exact for 
load moments (disturbances). Consequently an I-state controller was 
designed. It, however, is not able to follow an excitation as fast as the above 
described P-state controller. Figure 3 shows the results of the simulation of 
the speed controlled elastic two-mass system (eigenfrequency III =]00 Hz) 

with the designed I-state controller for guidance and disturbance excitation. 

gUidance behaviour disturbance behaviour -

Figure J: Results of the simulation of the speed control with an I-state controller 
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The time constant T of the state controller is chosen in such a way that the 
maximum permissible engine torque and the maximum permissible 
armature current are not exceeded. This makes it possible to have a direct 
comparison of the results of the state controllers with such of fuzzy 
controllers. 

poSition of load fIJI speed of load (PI 
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Figure 4: Results of the simulation of the position control with a P-state controller 

2.3 Position Control 

In order to be able to obtain the current angle 'P2 (= the position of the load 

mass) from the speed (Pl' an integrator has to be added to the system in 
figure 2. Consequently, the system now becomes a system of forth order. An 
additional feed-back coefficient has to be introduced and calculated for the 
new state fIJI for the P- or I-state controller. Figure 4 shows the result of the 

simulation for the position control with a P-state controller, that was 
optimized for the damping optimum. 

2.4 Parameter- and Structure Uncertainty 

The eigenfrequency 112 determines the behaviour of the system. The larger 

(smaller) the eigenfrequency, the harder (softer) is the system. This results 
form a lesser (greater) possible torsion of the shaft. This way, 1;2 also 

defines the speed of the controller. The softer the system, the lower is the 
possible controller speed in order to avoid extensive torsion of the shaft and 
the resulting oscillation of the two masses against each other. 
So far, the system was simulated with 1;2 = 100Hz. Now the robustness of the 

I-state controller is to be scrutinized on the basis of speed control. For this 
purpose the controller that was optimized for the 100 Hz system now is 
tested for the speed control of a two-mass system with a softer (50 Hz) and a 
harder (150 Hz) shaft. (figure 5). As expected, the transient behaviour 

t 
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response and the size of the overshoot improve and worsen for the harder 
(l50Hz) and softer (50 Hz) system correspondingly. The oszillation of the 
masses is a sign that the controller is not optimized for the parameters of the 
system anymore. For the mechanically harder system the maximum 
permissible engine torque is a limiting factor. In the softer system, on the 
other hand. the maximum permissible torsion of the shaft has to be 
considered. 

• .Ito _Ito 

• /\,. 

[tN' 
• 

• ~ :-... 
.lr--f '-l 

~ 
• .f; 

• • .. .. T ;lI II .. .. II .. 
Figure 5: Simulation of the speed control with a P-Itate controller 

The position control system is used for researching the effects of structure 
uncertainties. Therefore, slack is introduced additionally. The guidance 
behaviour of the P-state-position controller is shown in figure 6 for a step 
function response for a 5° and 10° slack. 

slack SO guidance behaviour slack J(p 
• • 
• • 

A " 10c 

If .t v v 

I 

• • • • .. • • • . .. 
Figure 6: Simulation of position control with a P-Itate controller, considering slack 

It has to be kept in mind that the controller was optimized for aperiodic 
behaviour and for a system neglecting slack. It can be observed, that the 
slack causes a limit cycle. The amplitude is dependent on the amount of 
slack. The frequency is defined by the eigenfrequency 1,.1 of the system. The 
use of a state controller that was optimized for the damping optimum is even 
more critical. Through the typical overshoot the slack area is generally 
passed. This causes a continuous oscillation with a high amplitude. The 
results of the I-state controller are even worse. By integrating the diviation 
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between the desired and the actual value, large regulation moments are 
created, resulting in some high amplitude oszillation. The sensitivity of the 
asymptotic P-state controller is mainly due to the large feed-back coefficient 
for the angle tp2' that is derived from the calculation. Only a non-linear 
consideration of the slack e.g. through switching between different 
controllers (structure and/or parameter) can improve the behaviour of the 
controller. 

fuzzy controll., state space linea, stat. controller 

Figure 7 :State space of a linear P-state controller and a fozzy controller 

3 Fuzzy-Control 
Finally, fuzzy-control systems have been defined for the speed and position 
control of the elastic two-mass system. In comparison to the traditional 
controller synthesis, fuzzy logic does not need any mathematical model of 
the system, but a description of the control strategy with verbal rules. 
Generally, a fuzzy controller is non-linear. Consequently a transient function 
response (phase-frequency characteristic) cannot be described like in linear 
systems. The fuzzy algorithm, therefore, constitutes a multi-dimensional 
non-linear transforming function between inputs and outputs. The advantage 
is that the controller can be adjusted optimally to the system. The 
disadvantage, however, is that no mathematical tools are available for 
optimizing. The design and optimization of a fuzzy controller, therefore, are 
only possible by experiment. 
A fuzzy controller cannot be described through a closed function. It can, 
however, be shown in the state space. Figure 7 shows the state space of 
each, a linear and a fuzzy controller for two inputs and one output. In this 
case the controller is visualized through a three-dimensional state space. 
This state space is like a look-up table from which a certain output is defined 
for each input. Linear P-controllers always form a plain in the state space. In 
order to observe the behavior of a closed non-linear control loop for an 
excication function, the succeeding states (supporting points in a defined 
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temporal order Ill) are connected to trajectories. The system dynamic can be 
followed from the density of the supporting points. The influence of the 
controller and the system to each other can be seen in the description of the 
state space. Consequently, it is a suitable aid for the optimization of the 
fuzzy controller. This method, however, is only possible for systems with 
merely two input varaibles. For systems of higher order a graphical 
description is not possible. If at all, cuts could be taken through the 
multidimensional description (two inputs are variable, all others are fix), but 
it does not make sense to create the trajectory. For a linear system merely the 
excitation function, but not its amplitude is of importance. In non-linear 
systems , on the other hand, this is different: The system reacts differently 
for step excications with different amplitudes. Caused by the fact that the 
trajectory changes with different excications , other locations of the phase 
state are passed through. As a consequence, different excications can cause 
totally different results. The system can, for example, show optimal 
behaviour for a step excitation. It, however, is not necessarily stable for a 
step-excitation with twice the amplitude. Since even a change of the system 
parameters cases different trajectories, this is also true for the robustness of 
non-linear .controllers. Integral and differential components cannot be 
realized with a fuzzy system and have to be implemented outside the system. 
In this case, the description in the state space is even more difficult through 
an additional time dependency and additional states. 

guidance behaviour disturbance behaviour 
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Figur 8: results of the simulation of the speed control with Q fuzzy controller 
(pJ-Fuzzy-Controller) 

3.1 Speed Control 
For the speed control of the elastic two-mass system fuzzy controllers were 
designed that consider all states of the system. Consequently, each rule 
contains three conditions and one conclusion. Figure 8 shows the results for 
guidance and disturbance behaviour. It was necessary to divide the linguistic 
variable into 7 subsets. In a :first step a P-fuzzy controller was designed. (P-
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portion with non-linear characteristic ahead). AB could be expected, it did 
not show stationary exactness during disturbance moments. A parallel linear 
integrator was introduced. The introduction of the fuzzy-I-portion led to a 
similar result as was received with the I-state controller. 

Position change for a guidance step 
Position (enrine 91 - A / load 92 - B) speed (engne "1 - A / load "2 - B) 
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Figure 9: results of the simulation of the positon control with afuzzy controlle" 

3.2 Position Control 
For the position control of the two mass system the development of a fuzzy 
controller that considers all 4 states was not performed due to the extreme 
effort. Instead, a position controller was superimposed over the existing 
optimized speed controller (cascade control). The position controller is 
based on the inputs of the rotational angle and speed of the load mass and 
calculates a desired speed for it. The inner speed-control-circle controls the 
engine torque from this desired speed. A worse result must be expected, 
since not all dependencies of the different states to each other can be 
considered. Moreover, the inner fuzzy controller is not optimized for random 
excitations as they are defined from the superimposed position controller. AB 
a consequence, the simulation result in figure 9 shows a higher overshoot 
and a longer transient time in comparison to the conventional controller. 
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Figur 10: Results of the simulation of the speed control of the elastic two-mass system 
with the fuzzy controller (optimized for a system- eigenfrequency 100Hz) 
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3.3 Parameter- and Structure Uncertainties 

In order to test the robustness of the fuzzy speed control loop for parameter 
changes, the eingenfrequency of the system was changed. Figure 10 shows 
the results of the simulation for a system with 50 z and J 50 Hz. As for the 
state controller it is also true: The softer the system, the worse the possibility 
to control it The fuzzy controller shows a similar robustness as the linear 
state controller. For the test of the structure uncertainty, slack was now 
considered in the position~ntrol-loop. Whereas the linear state controller 
already starts to oscillate (stabel oscillation) with a slack of 5°, the fuzzy 
control loop is still stable with a slack of ]00. (figure 11). 

slack SO guidance behaviour slack 100 
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V V . . 
Figure J J :Results of the simulation of the fozzy position control considering slack (load ({J~ 

4 Summary 
The state control proved to be quite robust for parameter changes. When 
slack was introduced, however, limit cycles were observed. In order to 
eliminate these, complicated structure and/or parameter switching strategies 
were necessary. The designed fuzzy controller on the contrary was robust for 
uncertainties in structure and parameters. This is due to the non-linear 
design, which gives filtering abilities to the fuzzy controller, that are adapted 
to the process behaviour in certain areas of the state space. The robustness is 
the result of a suitable choice of rules, subsets etc. It is, however, not true, 
that fuzzy systems generally are more robust. In the contrary, initial instable 
behaviour for changing excitations is usual. It is not possible to make 
general statements about the quality, robustness and stability of fuzzy 
systems, like this can be done for linear systems. 
The fuzzy controllers were designed iteratively in sequencies of simulations 
and compared to linear controllers. Practical experience shows that it is 
helpful to reduce the amount of parameters for adjustment of a fuzzy 
controller. Only linear Sum-I-Subsets are used for the input variables to get 
a smooth control function. For the outputs singeltons are sufficient because 



Comparison of Conventional and Fuzzy Control 85 

for defuzzification the maximum method COM was used. The minimum was 
used as AND-<:onnection and the maximum as OR -connection. This is 
posslble, since compensation is avoided already when creating the rule base 
for applications of control theory. These simplifications led quickly to an 
implementation of fast fuzzy controllers. Optimizing the controller, on the 
other band, proved to be timeconsuming and difficult 
The creation of suitable rules is difficult for systems of high order (with 
several inputs). In this case, it is helpful to introduce intermediate values 
(cascade control systems). This, however, makes it impossIble to consider 
the dependencies of all inputs. The controller can only work suboptimal. The 
design and optimization of the controller should be started at the inner 
control loop (e.g. speed control) and be performed step by step. Since we are 
dealing with a nonlinear system, the optimization is only possIble for certain 
excitation functions (e.g. step functions). In case the superimposed fuzzy 
controller (e.g. position controller) determines the desired behaviour for the 
total system, usually there are random excitaiton functions. The danger 
arises that the inner control loop becomes suboptimal or even instable. In 
these cases a combination with linear controllers for the subimposed control 
loops is helpful. 
The most positive factor of a fuzzy controller is, that no mathematical 
modell is needed. Traditional controllers usually are merely designed for one 
operating point Consequently, complex control stategies can only be 
realized with great effort through switching between different controllers. 
With fuzzy logic, on the other hand, nonlinear systems can be controlled for 
more than one operation point Even the most complex systems can be 
realized with the new theory. In addition, by using verbal fuzzy rules, also 
vague information can be considered. Moreover, due to their nonlinearity, 
fuzzy control systems (that are designed correctly) can show higher 
robustness than conventional controllers. Considering the fact, that mainly 
PID controllers are used in the industry up to now and the PID parameters 
are determined heuristically, everything suggests the implementaiton of the 
new fuzzy theory. Despite these advantages, one, however, should not forget 
the negative aspects: Even for the design of the structure of a fuzzy 
controller it is necessary to know the basics of control theory. It, for 
example, helps to know, that the I-portion (integrator) is responsible for the 
compensation of stationary diviations. Moreover, it is important to be 
familiar with methods of distuIbance compensation and for damping the 
system With the poSSIbility of verbal controller design, there is the 
temptation to not even bother to develop a mathematical model, even for 
simple systems in which the use of a a linear controller would be absolutely 
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sufficient Also, for traditional controller design heuristic design methods 
are necessary. This is especially true for nonlinear systems. Only an expert is 
able to choose from the variety of methods the optimal one for a specific 
process. The fuzzy solution, however, is a totally heuristic method that is 
based on experimenting. The adjustment of the membership functions for 
example, is done arbitrarely and by experiment. So far, no systematic 
methods are known for optimizing the controller, proving its stability and 
damping oscillations. It is not possible to dimension or estimate the 
parameters. Moreover, extensive (complete) tests are needed in order to 
verify the mode of operation (stability etc.) in a closed control loop. 
Robustness and adjustments of the nonlinearities can only be obtained 
through thorough knowledge of the system. Consequently, also for the 
design of a fuzzy controller, some sort of model of the system is necessary. 
This model is not explicitly descn"bed in the form of a mathematical transfer 
function, but implicitly in the verbal description of the control strategy. The 
problem of the design of the rulebase should not be underestimated. Even if 
somebody is able to control a process surprisingly well without too much 
knowledge about it, this is mainly done subconsciously. Whereas the 
expression of IF-THEN-rules is very similar to human thinking, its 
development from subconscious strategies, however, is not easy. 

Fuzzy-Control certainly is not a general solution that bursts all limitations of 
traditional control theory. The basic principles of physics cannot be turned 
around by fuzzy logic. Fuzzy is a new tool that allows the systematic 
realisation of rule-based strategies. This is, what fuzzy logic should be taken 
for. Whereas conventional methods will still dominate in control theory, 
fuzzy should be seen as a suitable and helpful tool for special problems. If 
control strategies are available in the form of verbal IF-THEN rules fuzzy 
logic should be used. Especially the combination with conventional 
controllers is very promising. In cases in which the description of the system 
and the number of inner states is unknown or not really measurable, the 
control of this system will always be only suboptimal. In reality, often PID 
controllers are used for such systems. The parameters of such a controller 
are determined subjectively by experiment. In cases of switching between 
different controllers the points of switching also have to be determined. 
Especially where PLCs (programmable logical controllers) are used, the 
approach to controller design is similar to the one of fuzzy control. In this 
case fuzzy logic is a powerful tool (e.g. mixture regulation [Knappe 93]) for 
the systematical implementation of rulebased control statements into an 
algorithm. 
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Fuzzy N euro Systems: An Overview 

Detlef N auck 

Abstract 

This paper gives an overview to different concepts of neural fuzzy 
systems. There are already several approaches to combine neu­
ral networks and fuzzy systems, to obtain adaptive systems that 
can use prior knowledge and that can be interpreted by means of 
linguistic rules as they are used e.g. in fuzzy controllers. Neural 
fuzzy models can be divided in two classes: Cooperative models 
which use neural nets and fuzzy systems separately, and hybrid 
models which create a new architecture using concepts from both 
worlds. Several of these approaches are discussed in this paper. 

1 Introduction 

The fascinating idea of combining neural networks and fuzzy systems is 
considered for several years, already. Ever since the application of the 
first fuzzy controllers the need for techniques to adapt a prototypical 
version of a controller to its task was recognized. But until today there 
are no sound theoretical foundations that can be applied to enhance 
the performance of an ill-defined fuzzy controller. Heuristic techniques 
that can be subsumed under the notion of tuning are used to change 
parameters in order to optimize its characteristics. Tuning can be a 
time-consuming process especially when the control task is complex. 

Fuzzy controllers that are able to tune themselves by changing some 
of their parameters based on knowledge about the process were consid­
ered early. Approaches to so called adaptive or self-organizing fuzzy 
controllers can be found e.g. in [Procyk and Mamdani, 1979, Shao, 
1988, Qiao et al., 1992]. An overview of this area is presented in [Dri­
ankov et al., 1993]. These kind of adaptive models usually use knowledge 
based methods and do not refer to neural networks. 

Neural networks that are also called connectionist systems are de­
signed to model certain aspects of the human brain. They consist of sim­
ple processing elements (neurons) that exchange signals along weighted 
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connections. Certain types of neural networks are universal approxima­
tors, i.e. they can approximate any continuous function on a compact 
domain to any given degree of accuracy, and they accomplish this task 
by learning from examples. For an introduction to neural networks see 
[Aleksander and Morton, 1990, Nauck et al., 1994, Rojas, 1993] 

The main advantage of neural networks, their ability to learn from 
examples, is reduced by their black box behaviour. Generally it is neither 
possible to use prior knowledge to initialize the network, nor their final 
state can be interpreted in terms of rules. Fuzzy systems on the other 
hand use knowledge, i.e. linguistic rules, and can always be interpreted in 
this way, but they are not able to learn. The advantages of one approach 
are mainly the disadvantages of the other one, and vice versa. So the 
idea comes naturally to combine neural networks and fuzzy systems to 
overcome their disadvantages, but to retain their advantages. 

These combinations are called neural fuzzy systems or neuro-fuzzy 
models, and they form an area of research that enjoys constantly rising 
importance and interest in the "fuzzy systems community". Although 
most neural fuzzy systems are devoted to control issues, and they are 
considered as an important trend in fuzzy control (see the paper of H. 
Hellendoorn in this book), they can also be found in other domains, 
e.g. data analysis (see the paper of K.D. Meyer-Gramann in this book). 
There are also combinations that are concerned about optimizing the 
learning procedures of neural networks [Narazaki and Ralescu, 1991, 
Simpson, 1992a, Simpson, 1992bJ. These models should be addressed as 
"fuzzy neural networks" or "fuzzy-neuro systems", but here they cannot 
be considered further. For an interesting approach of enhancing the 
performance of the backpropagation learning algorithm by fuzzy control 
see the article of Halgamuge, Mari, and Glesner in this book. 

In this article approaches to neural fuzzy control systems are re­
viewed. There are cooperative models and hybrid models. Cooperative 
approaches use neural networks to determine certain parameters (e.g. 
fuzzy sets, or fuzzy rules) of a fuzzy controller which is then imple­
mented without further using neural nets. Hybrid approaches define a 
new architecture that can be interpreted as a neural net and as a fuzzy 
controller. Their combination is therefore maintained during the whole 
lifecycle of the neuro-fuzzy controller. 
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2 Cooperative Neuro-Fuzzy Models 

Cooperative neuro-fuzzy models can be usually characterized by one of 
four categories: 

(a) Learning fuzzy sets: A neural net is used to learn fuzzy sets from 
sample data. This can be done by learning certain parameters 
characterizing a membership function, or by approximating the 
membership functions with neural modules which are then used 
within the fuzzy controller. Learning is usually done offline using 
a gradient descent algorithm. Fuzzy rules have to be developed 
apart from this. 

(b) Learning fuzzy rules: A neural net develops fuzzy rules from 
sample data. This is usually done by offline clustering algorithms 
and the respective neural architectures are self-organizing feature 
maps, or similar approaches using winner-takes-all learning pro­
cedures, or adaptive vector quantization. Fuzzy sets usually have 
to be defined before the learning takes place. Instead of neural 
networks fuzzy clustering algorithms might be used [Bezdek and 
Pal, 1992]. 

(c) Adapting fuzzy sets: A neural net is used to change parameters 
of the membership functions of a predefined fuzzy controller. If 
there is an error measure describing the performance of the con­
troller, this can be done online. Sometimes a neural network is not 
used explicetly, but a connectionist learning algorithm is applied 
directly to the fuzzy controller. 

(d) Scaling of fuzzy rules: A neural net is used to determine weights 
for fuzzy rules. To do this fuzzy sets and fuzzy rules must be 
known. Learning can be done online or offline. The weights are 
usually interpreted as "importance" of rules [von Altrock et al., 
1992, Kosko, 1992]' and this implies some severe semantical prob­
lems (see Section 4). Scaling the output of a fuzzy rule is equivalent 
to change the membership function of its conclusion. 

Next to these cooperative combinations there are approaches where 
a neural net is used as a pre-processor or a post-processor to a fuzzy 
controller. This is useful, if the input variables of the controller cannot be 
measured directly, and have to be created by a combination of numerous 
values. This way the neural net can function as an adaptive "information 
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compressor". On the other hand the output of a fuzzy controller might 
not be directly applicable to a process, and has perhaps to be combined 
with other parameters. This combination can be realized by a neural 
network. 

Within the context of this article these approaches are not considered 
as neural fuzzy models, because the neural net is not used to determine 
parameters of the fuzzy system. 

An approach of type (a) is presented by Nokamura et al. Using 
supervised learning their model is able to determine the fuzzy sets of a 
Sugeno controller based on an existing fuzzy rule base [Nomura et al., 
1992]. The antecedents of the rules use the parametrized triangular 
membership function: 

otherwise 

to represent the fuzzy set p~i) of variable Xi in fuzzy rule R,.. In this 
approach it is allowed to have fuzzy sets with p~i) # p~~), for r # r', 
i.e. it is possible that the same linguistic term is represented differently 
in different rules. Because backpropagation is used to determine the 
parameters of the membership functions a differentiable t-norm is needed 
to evaluate the antecedents. Therefore Nokamura et al. use the product 
of the membership degrees, and not their minimum, to define the degree 
of fulfillment of a rule. 

The problems of this approachs are the non-differentiable points in 
the triangular membership functions, and the potential semantical prob­
lems that arise by learning different representations for identicallinguis­
tic terms in different rules. For methods to overcome these disadvantages 
see e.g. [Bersini et al., 1993, Nauck et al., 1994]. 

The linguistic interpretation of self-organizing feature maps exam­
ined by Pedrycz and Card is a possibility to create fuzzy rules by connec­
tionist learning [Pedrycz and Card, 1992], and it is a neuro-fuzzy model 
of type (b). 

If the process that has to be controlled has n (input and output) 
variables the feature map consists of n input nodes, and the output layer 
is a two-dimensional map of nl x n2 nodes. For the competetive learning 
algorithm a set C of examples consisting of pairs of process state and 
correct control output values is needed. These values and the resulting 
weights are all from [0, 1]. After the self-organization of the feature map 
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each process variable can be described by a single two-dimensional map 
that consists of the weight matrix Wi of the respective input node Vi. 

After Pi fuzzy sets J.I~i have been defined for each variable Xi, these 
fuzzy sets are used to transform the maps. This is done by selecting 
one fuzzy set for each variable. This selection is denoted as a linguis­
tic description B. The transformed maps are then intersected to obtain 
a matrix D(B) = [d~B~ 1 that represents the compatibility of the learn-

1, 2 

ing result with the linguistic description B that represents the sequence 
(h,··· ,in): 

n lI~i)(W') rJ; I, 

i:iE{l, ... ,n} 

mm 
i:iE{l, ... ,n} 

( lI(i)(W' . .)) ri. 11,'2,1' 

n(B) is a fuzzy relation, and d~B~ is interpreted as the degree of support 
1, 2 

of B by node Vi
"

i 2 ' The height of n(B) is interpreted as the degree of 
compatibility of B and the learning result. By describing D(B) by its a­
cuts n~B) one obtains subsets of output nodes whose membership degree 
is at least a, and by finding patterns Xko E C for each Vi

"
i 2 such that 

mm 
X:XE.c 

holds, each n~B) induces pattern subsets X~B) ~ C, and obviously 

If there is a sufficiently large ao the induced set X~~) can be interpreted 
as the set of prototypes of the class described by B. Each B is a valid 
description of a cluster, if n(B) has a non-empty a-cut D~B). Each B 
represents a linguistic control rule, and by examining each combination 
of linguistic values, a complete fuzzy rule base can be created. 

This method also shows which patterns belong to no cluster, i.e. fuzzy 
rule. If their number is very high this may be due to an insufficient choice 
of membership functions. The problems of this approach lie in the deter­
mination of ao and the number units in the output layer. The learning 
algorithm is based on Kohonen's feature maps and its convergences is 
forced by reducing the learning rate, and there is no guarantee that the 
learning result properly represents the structure of the pattern set. Fi­
nally the learning result depends on the sequence in which patterns are 
propagated. 
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The advantages of this approach are that the structure of the pattern 
space is considered, and the information that is supplied by the member­
ship functions is completely used to determine rules that fit the learning 
result best. 

Another way to create a fuzzy rule base is presented by Kosko based 
on his FAM model (Fuzzy Associative Memory) [Kosko, 1992]. Assuming 
a finite domain X = {Xl, ... , Xm} a fuzzy set J." : X --+ [0, 1] can be 
viewed as a point in the m-dimensional hypercube 1m = [0, 1]m. Then 

a fuzzy rule R: If 6 is A]~{ 1\ ... 1\ ~n is AtJ Then TJ is Bj can be 
interpreted as a mapping R : 1ml x ... x 1mn --+ P. 

A FAM is used to store a fuzzy rule (J.", II) with a single antecedent 
Il and a single conclusion II. Let Ili = Il(Xi) and IIi = II(Yi), then a FAM 
is defined by its connection matrix 

W = [Wi,j] = Il 0 II, min(lli' IIj), 

and it represents a fuzzy relation p : X x Y --+ [0,1]. W is denoted 
fuzzy Hebb matrix and their calculation is called correlation minimum 
encoding [Kosko, 1992]. The associative recall is defined as 

v = Il 0 W, IIj = .. max min (Ili, Wi ,j) = min( Vj , height(Il)). 
"tE{I, ... ,m} 

So the recall is always correct, ifheight(ll) 2: height(v) holds. This means 
there are no errors, if normal fuzzy sets are used, i.e. (3 X E X) Il(x) = l. 

A FAM can only store a single fuzzy rule because a simultaneous 
storing of several rules would cause too many errors in the recall result. 
Due to the operations involved the disturbance between patterns would 
be even more severe then in common neural associative memories. To 
implement a rule with a conjunction within the antecedent, several FAMs 
have to be used, and their recalls have to be combined by minimum. 

FAMs can be used to implement a fuzzy controller (see Fig. 1). The 
inputs to a FAM system consist of binary vectors where each of them 
has exactly one component with a value of 1 (fuzzy singletons). The 
output is a fuzzy set represented as a vector in [0, 1]'. If there is a 
defuzzification component involved, the output is also such a binary 
vector (BIOFAM: Binary Input-Output FAM). The encoded rules are 
additionally weighted by factors in [0,1]. Therefore a FAM system is a 
model of type (d). 

The determination of the rule weights is done during the creation 
of the fuzzy rule base. The learning is done by a kind of adaptive vec­
tor quantization called differential competitive learning (DeL) [Kosko, 
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Figure 1: A FAM system [Kosko, 1992]: The Ai, Bi denote fuzzy sets, 
and the Wi are weights from [0,1] 

1992]. For this a neural network with n input units and k = PI ..... Pn 
output units is used. The input units are connected to all output units, 
and the output units are connected with each other to create a topology 
of lateral inhibition. This means one has to define a partioning on the 
variables, i.e. the fuzzy sets have to be known. The form of the mem­
bership functions has no influence on the learning result, because only 
their support is considered. Each output neuron, i.e. its weight vector, 
represents a possible fuzzy rule. 

For the learning algorithm a set of examples of process states and 
correct control actions is needed. After the learning process for a fixed 
output unit and for all input units it is checked which fuzzy sets give a 
membership degree greater than zero for the weight between the respec­
tive input unit and the chosen output unit. This way a weight vector 
can be assigned to one or more rules. The weight of a fuzzy rule is de­
termined from its number of weight vectors, e.g. by using the relative 
frequency. Now a FAM system can be created, and the learning process 
can be continued during the operation of the system by updating the 
rule weights, or by deleting or adding rules. An adaptive FAM system 
is a combination of the approaches of type (b) and (d). 

The main disadvantage of this approach is the weighting of rules. 
First of all this produces semantical problems in the interpretation of a 
FAM system (see Section 4). If the set of examples used for the learning 
procedure is e.g. from observing a competent operator who controls the 
process under consideration, critical or extreme process state will be 
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probably not sufficiently represented in the data set. If the learning goes 
on during operation the weights of these extreme states will become 
smaller and smaller resulting in a system that will be not able to control 
these states in the long run. 

Kosko suggests to manually include rules to cope with extreme states, 
but this requires knowlegde about the process, and this might not be 
available. The user also has to make sure that the created rule base 
is consistent, i.e. that there are no rules with identical antecedents but 
different conclusions. 

The FAM matrices cannot be learned, and they are a somewhat in­
efficient kind of storing fuzzy rules. The notion neuro-fuzzy system only 
fits to this approach because of the adaptive rule weights, and the rule 
learning capabilities. But the learning algorithm does not depend on 
the FAM representation, it can be used for any fuzzy controller. The 
learning algorithm also does not consider the topology embedded in the 
structure of the data set, as it is done by the model of Pedrycz and Card. 
The information encoded in the pre-defined fuzzy sets is also not fully 
used. 

On the other hand the a FAM system is a simple and easy to im­
plement model that offers some adaptive features. For this reason the 
approach is used in some commercial fuzzy shells. A similar approach 
that uses bidirectional associative memories (BAM) and the delta rule 
is used to control a flying helicopter model with four rotors [Yamaguchi 
et al., 1992]. This learning procedure directly changes the encoding of 
fuzzy rules in the assoziative memories and is therefore a model of type 
(c). For some commercial applications of cooperative neuro-fuzzy mod­
els in Japan refer to [Asakawa and Takagi, 1994]. 

3 Hybrid N euro-Fuzzy Models 

Hybrid neuro-fuzzy models create a new architecture by using concepts 
from neural networks and fuzzy systems. The models can usually inter­
preted in terms of a fuzzy systems, and they can be viewed as a neural 
network with special activation and propagation functions. 

The ARIC model (Approximate Reasoning based Intelligent Control) 
by Berenji is a hybrid neuro-fuzzy model that uses several specialized 
neural networks (see Fig. 2). The architecture of ARIC uses concepts 
of adaptive critics, special neural controllers learning by reinforcement 
[White and Sofge, 1992], and it generalizes the neural model of Barto et 
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AEN 

Figure 2: Architecture of ARIC [Berenji, 1992] 

al. [Barto et al., 1983] to the domain of fuzzy control. ARIC consists of 
two neural modules, the ASN (Action Selection Network) and the AEN 
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(Action state Evaluation Network). 
The ASN itself consists of two feedforward 3-layer neural networks. 

One of them is an direct representation of a fuzzy controller, and the 
other one calculates a confidence value that is used to change the output 
of the control network. The input layer of the control network repre­
sents the state variables of a process. Each unit stores the triangular 
membership functions of the respective variable, and they are connected 
to the units of the hidden layer which represent the fuzzy rules. The 
antecedent of a rule is represented by the linguistic values that are prop­
agated on the weighted connection to the respective rule node, i.e. an 
input unit has to know which membership value has to be propagated on 
which connection. The membership values are scaled by the connection 
weights, and are combined within a rule node by the minimum function. 

The membership functions of the conclusions are stored within the 
rule nodes. ARIC uses Tsukamoto's fuzzy sets, functions that are mono­
tonous on their support. This way each rule delivers a crisp output 
value, because for each membership value greater zero there is exactly 
one element of the domain. The rule output values are propagated to 
the output unit that calculates a weighted sum using the weights of the 
connection between hidden layer and output layer. This output value is 
then scaled by a so called stochastic action modification based on the 
output values of the second (non-fuzzy) neural network of the ASN that 
uses the same weights as the control network with additional weights for 
connections between input and output layer. 

The AEN network is an adaptive critic element that learns to pre­
dict the state of the process. Based on an external reinforcement signal 
that tells the AEN whether the process control has failed or not the 
network calculates an internal reinforcement signal that is used to adapt 
the weights in the whole ARIC system. If there is a high internal rein­
forcement (i.e. a good process state) the weights are changed such that 
their contribution to the output value is increased (rewarding). If the 
process control has failed the weights are changed such that their con­
tribution is decreased (punishment). If the internal reinforcement is just 
small, the stochastic action modification is larger, allowing the system 
to randomly produce better ouput values. This approach is similar to 
adding Gaussian noise to the output values, as it is done in [Barto et al., 
1983]. 

Because of the hidden layers used in the networks of ARIC the learn­
ing algorithm cannot be based on reinforcement learning alone. ARIC 
tries to optimize the internal reinforcement, and therefore concepts of 
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backpropagation have been integrated into the learning procedure. 
The disadvantages of ARIC are the complex neural architecture, and 

the semantical problems that arise by changing the weights in the con­
trol network. Changing the weights for the antecedents is equivalent 
to scaling the membership functions which results in non-normal fuzzy 
sets. Because it is not guaranteed that the weights are from [0,1] this 
may even result in functions that cannot be interpreted as membership 
functions anymore. Changing of the conclusion weights is equivalent to 
shift the membership functions which might produce undesired changes 
in the support of the fuzzy sets (e.g. Positive Big might drift to negative 
values). It is also possible that the same linguistic value is represented 
differently in different rules (see also [Nauck and Kruse, 1992, Nauck 
et al., 1993]). 

Input ling. values 
of premises 

membership 

rules 

Soft-Min 

ling. values 
of conclusions 

local 
Mean-of-Max 

Output 

weighted 
sum 

Figure 3: The ASN of GARIC [Berenji and Khedkar, 1992] 

Berenji and Khedkar have tried to overCome the problems of ARIC by 
changing the ASN and defining the GARIC model (Generalized ARIC) 
(see Fig. 3). The ASN consists now of only one neural network that 
uses two additional layers of units to store the membership functions 
of the antecedents and the conclusions. The rule base is encoded by 
the connections, and there are no adaptive weights. The learning is 
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done completely by adapting parameters of the triangular membership 
functions. 

The learning algorithm of the AEN is unchanged, but the ASN learns 
by a kind of gradient descent to optimize the internal reinforcement 
signal. To do this a differentiable function to evaluate the antecedent of 
a rule is needed, i.e. the minimum function cannot be used here. GARIC 
uses a so called soft minimum function instead that is not a t-norm. Like 
ARIC the learning algorithm needs a crisp output value from each rule, 
i.e. it is not possible to use a defuzzification procedure on an aggregated 
fuzzy set determined e.g. by the usual maximum function. In GARIC a 
so called local mean of maximum procedure (LMOM) is used to obtain 
a crisp value from each rule, which only yields a result different from the 
usual MOM, if the membership functions are not symmetrical. 

The learning algorithm uses gradient descent to optimize the internal 
reinforcement signal. But because the dependency of this signal from 
the control output calculated by GARIC is not explicetly known, the 
learning procedure has to use some heuristical assumptions. Additional 
problems that have to be heuristically solved are due to the three non­
differentiable points of each membership function. 

The learning algorithm depends on the changes in the internal re­
inforcement signal. If it is constant the learning stops. This situation 
occurs when the process is controlled optimally, but it might also occur 
when the process maintains a constant but non-optimal state. There­
fore GARIC learns to avoid failure, and not to reach an optimal state. 
This may lead to an undesirable control strategy, because states short to 
control failure would be admissible. This kind of problem is addressed 
in [Nowe and Vepa, 1993]. 

Both ARIC and GARIC are just able to learn membership functions. 
The rule base of the controller has to be defined by other means. The 
models also need an initial definition of the fuzzy sets, and their number 
cannot change. This restriction usually holds for all hybrid neuro-fuzzy 
models. The advantage of these approaches is that no control values 
must be known for given states. The models learn by trial and error. 
This implies, of course, that a simulation of the process is available, or 
that learning can be done online at the process, what further implies 
that process failure is harmless. 

Another approach ofthis kind is the ANFIS model by Jang (Adaptive 
Network based Fuzzy Inference System) [Jang, 1991, Jang, 1992]. This 
model is described by Brahim and Zell later in this book. 

A model that completely consists of neural nets is the NNDFR model 
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by Takagi and Hayashi (Neural Network Driven Fuzzy Reasoning) [Tak­
agi and Hayashi, 1991]. This model uses neural nets to implement rules 
created by an external clustering procedure, and a neural net to deter­
mine the degree of fulfillment for each rule. The networks are trained by 
backpropagation. The model is not interpretable, i.e. there are no fuzzy 
sets implemented directly. 

An approach that uses a similar architecture to the ASN part of 
GARIC is presented in [Sulzberger et aI., 1993]. This so called FUN 
model (FUzzy Net) uses a stochastic learning procedure that randomly 
changes connections and parameters of membership functions, thus al­
lowing the model to learn fuzzy sets and fuzzy rules. Because learning is 
done by a stochastic search process, and not by a connectionist learning 
algorithm, it is only marginally a neuro-fuzzy model. 

The NEFCON model (NEural Fuzzy CONtroller) is also able to learn 
fuzzy sets and fuzzy rules [Nauck and Kruse, 1993, Nauck and Kruse, 
1994]' but it uses a reinforcement learning algorithm. This model is 
described in a paper later in this book. 

4 Applicational and Semantical Aspects 

If the application of a neuro-fuzzy model is considered, the semantical 
aspects of the underlying models should be known. Some of the models 
described here change their parameters in a way which does not allow 
an interpretation in terms of a fuzzy controller once the learning process 
has caused adaptions. 

The weighting of rules is sometimes interpreted as "importance" of a 
rule, but it cannot really be viewed this way. If a rule is less important, 
one usually means something like that it is only seldom applicable, or 
that it is not harmful if the rule is not applied, but not that its conclusion 
should be taken into account only to some extent. This aspect is already 
modelled by using fuzzy sets to describe its antecedent. Weighting a 
fuzzy rule is actually equivalent to changing its conclusion but often in a 
way that leaves the domain of the fuzzy model. Individual rule weights 
can cause identical linguistic values to be represented in different ways 
within the rule base, which is usually not desirable. 

The same problem occurs when approaches like ARIC do not have 
mechanisms to make sure that all changes caused by the learning pro­
cedure are interpretable in terms of a fuzzy system. Interpretation in 
terms of the usual Mamdani or Sugeno controllers is also in danger if 
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the evaluation of antecedents is not done by t-norms, or if specialized 
defuzzification strategies are used. 

These problems cease to exist if interpretation is not important. If 
there is only a need to have a working adapative controller that can 
use prior knowledge, any neuro-fuzzy model may be useful. In this 
case even a pure neural controller should be considered. But usually 
an interpretable architecture is of interest so that manual changes may 
be possible, or for reasons of security, or to be able to use standard 
fuzzy hardware. Interpretable architectures also have the advantage to 
be usable as knowledge acquisition tools. 

If it is possible that the controller learns online, either at a process 
model or at the process itself, hybrid neuro-fuzzy models can be used. 
This makes it possible to find a controller for a process that can not be 
controlled up to now, and they can use partial prior knowledge. These 
models are also interesting because they allow constant adaption dur­
ing the lifecycle of the controller. Approaches like NEFCON that are 
able to learn both fuzzy rules and fuzzy sets, and also pay attention to 
semantical aspects should be preferred. 

If a large number of examples describing process control is available, 
this data can be used with a cooperative neuro-fuzzy model to determine 
fuzzy sets if the fuzzy rules are known, or vice versa. In this case also 
other means like fuzzy clustering algorithms should be considered. 

If there is a problem to find an aedequate fuzzy controller for a given 
process, neuro-fuzzy models should not be considered as the ultimate so­
lution. There is not much experience with these models until today, and 
they are usually applied to toy problems under laboratory conditions. 
To understand these approaches better, generic models can help, and 
testbeds and benchmarks are needed to compare different neuro-fuzzy 
systems. 

5 Conclusions 

This paper wants to give an overview to the large variety of neural fuzzy 
systems that are known today. They are usually designed for fuzzy con­
trol applications. But in the near future other areas of application like 
data analysis will certainly emerge. Also the use of fuzzy methods to 
enhance the learning algorithms of neural networks will be of further 
interest. One of the other articles in this chapter, the paper by Halga­
muge, Mari, and Glesner, describes how fuzzy techniques can be applied 
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to tune the parameters of the backpropagation learning procedure for 
multilayer perceptrons. 

The paper by Felix, Kretzberg and Wehner addresses a special part 
of data analysis, the analysis of images. The authors describe the appli­
cation of fuzzy methods and compare them to neural networks. 

The two remaining papers in this chapter describe special hybrid 
neuro-fuzzy models. The article of Brahim and Zell present an exten­
sion to the well known Stuttgart Neural Network Simulator (SNNS) to 
implement the ANFIS model. The last paper in this chapter is about the 
NEFCON model, and presents NEFCON-I, a simulation environment to 
develop neural fuzzy controllers. 
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3.2. Image Analysis based on 
Fuzzy Similarities 

Rudolf Felix, Thomas Kretzherg, Martin Wehner 

Abstract 
The so-called qualitative and structural fuzzy image 

analysis are desribed. For image data represented as 
fuzzy sets a special notion of similarity - the analogy -
is used in order to compare the images. The notion of 
analogy has been previously applied in fuzzy decision 
making. Subsequently the application examples are 
given. Finally a comparison is made with neural net­
works in the field of character recognition. 

1 Introduction 
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In the field of pattern recognition the syntactic and the decision-making­
oriented approach are distinguished (16). The syntactic approach considers 
the pattern recognition as solving of the word problem for formal languages. 
The decision-making-oriented approach uses weighted sums of image char­
acteristics, the so-called utility functions. 

Especially the industrial application of the approaches is almost impos­
sible because of the high computational complexity of the analysis algo­
rithms. For instance, the computational complexity of the word problems for 

context-free languages is 0 (n \ Since many pattern recognition problems 
can only be described in a context-sensitive way and the complexity of the 

analysis is 0 (2"), the approach is not acceptable for real world problems. 

Using utility functions, the problem is to determine adequately the 
weights. In the case that there are interdependences between the different 
characteristics aggregated in the sum. the determination of the weights is of 

o (2") similarly to the context-sensitive syntax analysis. 

In [2] and [3] an approach is presented which analyzes the interdepend­
ences between characteristics of decision situations expressed as decision 
goals. The approach is based on different fuzzy relations describing relation-
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ships between decision goals. Based on the relationships the decision mak­
ing problems are solved in polynomial computational time. 

Since the decision making approach mentioned above is an altermative 
to decision making methods using utility functions [4], the idea to compare 
images using the same fuzzy relations, now applied to image characteristics 
instead of goals, seems to be promissing. 

2 Basic Definitions 

Let C be a non-empty, finite set of image characteristics 

c:= {c1 , ••• ,cn }, ie {l, ... ,n}.Foreveryimage 0 two fuzzy sets are de­

fined as follows: 

. O( ). _ {5, if the presence of characteristic c i is observed with imensity 5 
Vi· J.1s ci · - 0 else 

(1) 

. o( )._ {B, if the non - presence of characteristic ci is observed with intensity B 
\7'i·~S ci·- 0 else 

(2) 

Every image 0 can be represented as two fuzzy sets S and D. The 
fuzzy set S describes the degree of presence of the characteristics. The fuzzy 
set D describes the degree of their non-presence. 

Starting with such a representation of an image, two images can be com­
pared based on fuzzy inclusions and non-inclusions between the sets S 
and D of the corresponding images. 

o 0 
Let J.lc:J.l lXJ.l 2~[O,1] (3) 

be an inclusion relation for q c ~. 

The non-inclusion J.l ct: for 01 rz. O2 is defined as J.l ct: : = 1 - J.l c: . (4) 
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Based on the introduced definitions the notion of similarity called 
"analogy" is defined as follows: 

where 01 and O2 are two images to be compared 

Note that the analogy is not a similarity relation in the sense of [5], [6], 
[7], [8], [9], since it is not symmetric. 

3 Determination of Sand D 

In order to describe in which way the fuzzy sets S andD are determined let 
"Us consider grey level images as an example. 

In order to perform the comparision, the image is partitioned into a grid of 
sectors. For each sector an average of grey levels is used as characteristic in 
the sense of the definition of }l s and J.L D . A characteristic C i is completely 

absent if the average grey level is white. Using a normalization of values 

between black and white the value of J.L s 0 and J.L DO for every sector can be 

calculated. The image 0 is then represented by the two fuzzy sets S and 
D. 

In a similar way additional characteristics, for example the number of grey 
level changes, can be considered. 

Note that the computational complexity of the comparison of images based 
on the notion of analogy is O( n) where n is the number of characteristics 

(sectors) under consideration. 

4 Qualitative and Structural Image Analysis 

One of the aspects when determining the sets S and D is the granular­
ity of the grid structure which of course implies the number of sectors and 
therefore the number of characteristics to be considered when representing 
the image. 
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The higher the number of sectors, the more details of the image are rep­
resented explicitely by S and D. Since the location of the sectors within the 
image can be expressed by indexing, structural information of the images is 
represented explicitely, too. Therefore, with an increasing number of sectors 
the analysis of the image becomes increasingly structural 

The lower the number of sectors the less structural information is repre­
sented explicitely and the more qualitative becomes the analysis of the im­
age. The term "qualitative" refers to image analysis which does not concern 
information about the location of the characteristics of the image. Qualita­
tive analysis refers rather to the presence or absence of image characteristics, 
to their distribution inside of the image and to their intensity. 

In the extreme case, each sector corresponds to one pixel in case of 
structural analysis. The extreme case of qualitative analysis is reached when 
the whole image is contained in only one sector. 

5 Application Fields 

Both the structural and the qualitative image analysis have already been 
applied in numerous analyzing tasks. The possibility to analyze contours of 
any kind opens a variety of applications whenever information refering to 
contours is relevant. For example analysis of the quality of punched work 
pieces, quality analysis of casings, quality of robot controlled placement and 
positioning actions in the process automation [11] are examples of success­
ful applications (see Fig. 1, 2). 

Fig. 1 
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Fig.2 

Qualitative image analysis has been applied in the field of surface classi­
fication [1], for example in the field of soot dispersion tests used in order to 
classify the quality of gum workpieces used in the automotive industry (see 
Fig. 3). 

Fig. 3 
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6 Comparison with Neural Networks 

The image analysis method presented in previous sections can be used in 
application fields similar to neural networks. In order to compare the per­
formance of the method presented here with solutions based on neural net­
works an example application has been implemented using both methods, 
and the results have been compared. 

The application refers to recognition of handwritten capital characters. 
Fig. 4 shows examples of such characters. The comparision of the results 
[12] shows that the performance of both methods is similar. 

D-

Fig.4 

The advantage of the method based on the notion of analogy is the fact 
that the set of characters to be required can be extended incrementally in 
O( n) computational time, where n is the number of sectors considered. For 
this, the only operation to be performed is to compute the sets S and D for 
the new character . Once the sets S and D for the new character are de­
termined, they can be attached to the set of the old characters and the rec­
ognition can immediately be performed on the extended set of characters. 
This holds independent of the number of characters under consideration. 
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7 Summary 

A method for image analysis based on a notion of fuzzy similarity has 
been presented. Analogy is a fuzzy relation which is used to compare images 
represented as fuzzy sets. In contrast to other approaches, both the presence 
of image characteristics (for example grey level information) and their ab­
sence are used to represent an image. Based on the notion of analogy it is 
shown how structural and qualitative image analysis can be performed in 
linear computational time. Some application examples and a comparision 
with neural networks based approaches are indicated. The comparision re­
fers to the field of recognition of hand-written capital characters. It shows 
that the method based on the notion of analogy performs similarly to neural 
networks, but is able to increase incrementally the number of characters un­
der consideration. 
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3.3. ANFIS-SNNS: Adaptive Network 
Fuzzy Inference System 

in the Stuttgart 
Neural Network Simulator 

Kais Brahim, Andreas Zell 

Abstract 

In this paper the Neuro-Fuzzy system ANFIS (Adaptive Net­
work Fuzzy Inference System) and its integration in the Stuttgart 
Neural Network Simulator (SNNS) is described. The rule-based 
knowledge base of a fuzzy system is directly mapped to the net­
work structure of a neural network. With a hybrid learning algo­
rithm the system adapts itself to the environment by using exam­
ples to optimize the rules. The structured network architecture 
also gives the possibility to extract the optimized fuzzy rules from 
the network after training. 

1 Introduction 
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ANFIS (Adaptive Network Fuzzy Inference System) [Jan92a] is a Neuro­
Fuzzy system which realizes an interesting combination of fuzzy logic 
with neural networks. An existing knowledge base of fuzzy IF -THEN­
rules, which may be generated, for example, by a fuzzy modeling envi­
ronment (FME) [Bra93], is directly mapped to the structure of a neural 
network. The neural network may then be trained with conventional 
learning algorithms like backpropagation [RM86] or with a new hybrid 
learning algorithm. In both methods additional training examples are 
used to optimize the existing fuzzy rules. The special network archi­
tecture permits to extract the optimized fuzzy rules from the trained 
network. Coarsely specified rules are sufficient to initialize the network, 
since they are optimized with the training data during learning. 
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This methodology simplifies modeling of systems with fuzzy logic 
because it allows an automatic adaptation to changing characteristics of 
the modeled process. In this way a rapid incremental system design is 
possible in which first the existing knowledge is coded in fuzzy rules and 
later these rules are refined and adapted to the changing process. 

Different fuzzy inference types (Tsukamoto, Max-Min, and Takagi­
Sugeno) are mapped to three different network architectures (ANFIS-1, 
ANFIS-2 and ANFIS-3). The main difference lies in the specification of 
the conclusions of the IF-THEN-rules. 

2 Description of the ANFIS Architectures 

The ANFIS architectures are special multi-layer feedforward networks 
consisting of adaptive and non-adaptive units (cells, artificial neurons), 
which communicate by directed links (see Fig. 1). Adaptive elements 
possess parameters which are optimized during learning. 

Viewing Fig. 1 we note that layer two consists of adaptive units, 
where each unit possesses a number of premise parameters (E 8 1 ) to 
define its membership function. Units in the layer preceding the last 
layer are also adaptive. Their parameters define the set of conclusion 
parameters 8 2 . 

2.1 ANFIS-1 

These networks (see Fig. 1) realize a fuzzy inference after Tsukamoto. 
For simplicity, in the conclusion part (layer 5) a linear approximation of 
the monotonously increasing membership function is performed. 

The example network in Fig. 1 contains the following rule base: 

Rule 1: IF x IS Al AND Y IS Bl THEN o~ = h(o~,ot) 
Rule 2: IF x IS A2 AND y IS B2 THEN o~ = h(o~,o~) 

2.2 ANFIS-2 

These networks realize a fuzzy inference after the Max-Min method. One 
network layer is omitted in comparison to ANFIS-l. 

Rule 1: IF x IS Al AND Y IS Bl THEN ZI IS C1 

Rule 2: IF x IS A2 AND Y IS B2 THEN Z2 IS C2 
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ANFIS-l 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

ANFIS-2 

ANFIS-3 

Figure 1: Example networks for the three ANFIS network types 
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The adaptive cells in layer 4 perform their inference after the Max­
Min inference method. The output unit computes a defuzzification. This 
network type realizes an inference which is more complicated than types 
1 or 3. This considerably slows down learning because of the more dif­
ficult parameter adjustment. In this method parameters may only be 
adjusted by a gradient descent learning. For this reason in our neural 
network fuzzy logic simulation environment no neural network optimiza­
tion method has been implemented for this type of inference yet. 

2.3 ANFIS-3 

This network realizes a Takagi-Sugeno inference which is more powerful 
than the inference of type 1. 

Rule 1: IF x IS Al AND Y IS Bl THEN o~ = h(x, y) = PIX + QlY + rl 

Rule 2: IF x IS A2 AND Y IS B2 THEN o~ = h(x, y) = P2 X + Q2Y + r2 

where unit i in layer 5 contains the conclusion-parameters {Pi, Qi, ri}. 

3 ANFIS Learning Algorithms 

Learning algorithms for ANFIS networks may be based on gradient de­
scent algorithms like backpropagation [RMS6]. Since this class of learn­
ing algorithms is rather slow and its convergence is restricted by the ex­
istence of local minima, a hybrid learning algorithm is presented which 
may be applied to ANFIS networks and other feedforward-networks of 
similar structure. Two learning algorithms (hybrid offline and hybrid 
online) adjust the parameter set 8 = 8 1 l±J 8 2 , A learning cycle consists 
of a forward- and a backward pass (see table 1). 

Forward Pass Backward Pass 

Premiss parameter 8 1 unmodified gradient descent 
Conclusions parameter 8 2 LSE unmodified 

Table 1: The ANFIS hybrid learning rule. 
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3.1 The Forward Pass 

To simplify the description it is assumed that the ANFIS network has 
only one output unit. The algorithm may easily be generalized to several 
output units. The output out is generated as follows: 

out 

H(out) 

B 
(AT A)-1AT B 

F(f,s) 

H 0 F(f,S) 

AX 

X· 

(1) 

(2) 
(3) 

(4) 

Here f is the vector of all input variables, S the set of all parameters 
of all cells. There exists a function H such that H 0 F is linear in the 
premise parameters S2. P examples change equation (2) into the matrix 
equation (3), where the unknown vector X contains the elements of S2. 

The number of elements in S2 (=M) is usually much smaller than 
the number of training data (P), thus equation (3) has no exact solution. 
The LSE algorithm minimizes the error IIAX - BI12 by approximating X 
with X· (4). The direct computation of X* involves a time consuming 
computation of the matrix inverse (AT A)-1 and requires that the ma­
trix (AT A) is non-singular and well-conditioned. Therefore an iterative 
method to compute X* is used [Str90j: 

Sj ai+1 ar+1 Si 5-------'-,-:--::--
, 1 + ai+1Siai+1 

Xi + Si+1 ai+1 (br+1 - ar+1 X ;) 

(5) 

(6) 

Here i = 0,1, ... , P - 1, P is the number of training patterns, Xo = 0, 
So = ,I, where, is a large number, ar is the i-th line of the matrix 
A, br the i-th element of the vector B, X* ::!:: X p . The above equations 
may be generalized to networks with multiple output units by making 
br the i-th row of the matrix B. 

3.2 The Backward Pass 

The error Ep is propagated back to modify the premise parameters S1. 

For each pattern pair p the error derivatives ~ are calculated for every 

cell o. The error derivative ~ at the output layer L is equal to -2(tp -
0). 
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For an internal cell i in layer k the error derivative may be computed 
6E #(k+l) 6E 60k +1 

with the following chain rule: ~ = I: iifr 6;;! , where 1 :::; k :::; 
.p m=l mp tp 

L - 1 (L = number of layers). 
With this chain rule the error derivatives of the output cells as well 

as internal (hidden) cells may be computed, the latter based on the error 
derivatives of succeeding layers. 

3.3 Simplified Fuzzy IF-THEN-Rules 

In ANFIS-1 the activation (membership) functions of layer 5 cells are 
restricted to monotonously increasing functions, which may not model 
linguistic variables with convex membership functions. In ANFIS-2 a 
defuzzification is necessary, and the systematic adjustment of parameters 
is time-consuming. In ANFIS-3 cells of layer 5 may not be connected 
with linguistic variables. To alleviate these shortcomings, simplified IF­
THEN-rules of the following form are introduced: 

IF x IS A AND y IS B THEN z IS d 

where d is a constant. This class of rules may be realized with all three 
ANFIS types. Despite the restriction of the output to the constant 
d these types of ANFIS networks may still possess the capability to 
approximate non-linear functions from example data points. [J an92a] 
(Stone-Weierstra"s Theorem). 

This simplified ANFIS architecture furthermore performs a type of 
inference which is functionally equivalent to Radial Basis Functions (RBF) 
[Jan92b] [Vog92]. The equivalence only holds when gaussian membership 
functions are used. 

The hybrid learning algorithm may also be applied directly to radial 
basis functions. Similarly, algorithms used in the theory of radial basis 
functions to find optimal RBF parameters may be used in ANFIS. 

4 Integration of ANFIS in SNNS 

The ANFIS networks and learning algorithms described above were inte­
grated into a version of the Stuttgart Neural Network Simulator (SNNS). 
SNNS is an efficient simulator of neural networks for Unix worksta­
tions with a sophisticated graphical user interface under X-Windows 
[ZMH+92]. Meanwhile it comprises approximately 20 different network 
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types and learning algorithms and is used in some 800 installations world­
wide. SNNS (without ANFIS) is available for research purposes free of 
charge via anonymous ftp from the University of Stuttgart, Institute for 
Parallel and Distributed High-Performance Systems (IPVR). 

The integration of ANFIS in SNNS consisted of the following items: 

• Creation of ANFIS networks by a network conversion tool, which 
compiles the rules from a fuzzy modeling environment (FME). 

• Integration of different transfer functions in SNNS. 

• Development of initialization routines with LSE (least square esti­
mation) to start the learning algorithms. 

• Integration of the hybrid learning algorithms (online and offline). 
This additional training yielded resulted in improved performance 
for the ANFIS-l and ANFIS-3 network types. 

4.1 Extensions to the SNNS kernel 

Several functions to integrate ANFIS networks in SNNS were imple­
mented. 

1. A special conversion tool converts rules from a fuzzy modeling 
environment FME [Brag3] to ANFIS neural networks in SNNS 
format. Thus tested and debugged fuzzy systems may be used 
as a starting point which considerably shortens network training 
time. Furthermore the heterogeneous network structure may be 
generated rapidly and without errors. 

2. The SNNS unit data structures were extended to include the premise 
and conclusions parameters necessary in ANFIS. Each cell has the 
parameters a, b, c defining the shape of the membership function 
and a pointer to an additional array of conclusion parameters which 
is used by the LSE algorithm. 

3. For loading and writing of ANFIS networks two new I/O functions 
were implemented, which additionally set premise and conclusion 
parameters and which write them to file together with the other 
network parameters. The SNNS network format was extended by 
a new section to define the parameters of the fuzzy logic units. 

4. Different matrix operations were added which were necessary to 
implement the iterative LSE algorithm. 
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5. In ANFIS-1 and ANFIS-3 two initialization algorithms to deter­
mine conclusion parameters with the LSE algorithm were imple­
mented. 

6. A number of new transfer functions like T-Norm and inference 
operators for the ANFIS models were integrated in SNNS. 

7. ANFIS learning algorithms for ANFIS-1 and ANFIS-3 in online 
and batch mode were integrated in SNNS 

The tests performed with the resulting ANFIS networks have shown that 
training in online mode is affected by numerical instabilities. Training 
in batch mode, on the other hand, is more stable. 

4.2 Application Example 

The use of ANFIS networks is demonstrated with the following example 
[NP90] [Jan92a] in which the neural network used in this task (1-20-10-
1) is replaced by an ANFIS-3 network. The task is the identification of 
a non-linear component f of a controller with ANFIS-3. The behavior 
of the system is described mathematically by the following differential 
equation: 

y(t + 1) = 0.3y(t) + 0.6y(t - 1) + f(u(t)) (7) 

where t is the time index, u(t) the input, y(t) the output and 10 the 
function which is to be approximated. The Training in ANFIS used 
250 training pattern pairs (u, J), which were created by the following 
function: 

u(t) 

I(u) 
sin(21rt/250),1 ::; t ::; 250 

0.3 sin( 1ru) + 0.6 sin(31ru) + 0.5 sin( 51ru) 

(8) 

(9) 

The ANFIS-3 network used in online learning consists of 7 units in 
layer 2, i.e. 7 membership functions for the input x which generate 7 
rules. In total the hybrid learning algorithm fits 21 premise parameters 
and 14 conclusion parameters to the training data. The network is de­
scribed in Fig. 2. With seven membership functions hardly any change 
of the premise parameters takes place. Most changes are performed at 
the conclusion parameters. With as few as three rules the system shows 
the first small differences to the behavior or the physical system. Table 
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Figure 2: ANFIS network in SNNS with 7 membership functions 

Method Parameters Learning cycles 

Neural Network (1-20-10-1) 261 50000 
ANFIS-3 (online) 35 250 

Table 2: Performance comparison of ANFIS with neural network given 
in [NP90j 

2 summarizes the performance comparison of the ANFIS fuzzy rules or 
ANFIS network with the standard neural network given in [NP90j. 

The number of network parameters may be reduced further by using 
fewer membership functions and training the network in offline (batch)­
mode. Networks with 5, 4 and even 3 membership functions (rules) have 
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shown good results with as few as 50 training cycles. 

5 Summary 

The implementation of Adaptive Network Fuzzy Inference Systems (AN­
FIS) in SNNS permits an optimization of a fuzzy system based on train­
ing data extracted from the actual working environment. Fuzzy systems 
with were created, tested and saved as rules in a fuzzy modeling environ­
ment (FME) are automatically mapped to three different types of AN­
FIS networks, which differ by their network structure and their inference 
method. With hybrid learning algorithms, which consist of a gradient 
descent algorithm combined with the method of least square estimation 
(LSE), the parameters of the network are adapted to the training data 
of the environment. The ANFIS architecture also gives the possibility 
to directly optimize a knowledge base in the form ofIF-THEN-rules and 
to extract it as rules after optimization. The capabilities of ANFIS in 
comparison with standard feedforward neural networks in online identi­
fication of a controller were shown with an example. 
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Fast Perceptron Learning by Fuzzy 
Controlled Dynamic Adaptation 

of Network Parameters 
Saman K. Halgamuge, Andreas Mari and Manfred Glesner 

Abstract 

Application of fuzzy control for obtaining better performance 
from conventional neural networks is a new area in the field of 
fuzzy-neural combined systems. Conventional backpropagation 
algorithm for example can be improved by changing network pa­
rameters, based on the empirical knowledge gained by the user. 
This manual adaptation is effectively replaced by a fuzzy con­
troller that contains the a priori knowledge in form from member­
ship functions and rules. The implemented modified backpropa­
gation algorithm with a fuzzy controller for dynamic adaptation 
of network parameters is tested with a benchmark data set and 
two real world problems. 

1 Introduction 

After several applications in Japan based on theoretical foundations and 
fundamental techniques developed in the last few decades, a growing up 
of huge interest in fuzzy systems can be seen in Europe. 

Since neural networks (NN) belong to the same category of model­
free estimators as fuzzy systems (FS), many researchers are successful 
in combining them. Fusion techniques for neural networks and fuzzy 
systems can be divided into three categories. Neural networks can be 
applied to generate and tune FS (e.g. [Kosko, 1992], [Halgamuge and 
Glesner, 1994b]), efficiency of neural networks can be improved by using 
FS (e.g. [Arabshahi et al., 1992], [Xu et al., 1992]), and neural and fuzzy 
systems can be cascaded. 

This paper belongs to the second category, and reports a successful 
attempt of using fuzzy control in improving perceptron learning. After 
a brief explanation on theoretical background of the backpropagation 
algorithm [Rumelhart and McClelland, 1986] giving more emphasis on 
speed influencing parameters, the authors present the fuzzy controlled 
dynamic adaptation method. Finally the obtained results are given, and 
future work is discussed. 
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2 Speed Influencing Parameters in the 
Backpropagation Algorithm 

The originally proposed formula ([Hertz et al., 1991]) for computation 
of the weight updates in a multilayer perceptron is 

(1) 

where Wij stands for the weight value from the jth neuron to the ith 
neuron, TJ for the learning rate and t denotes the iteration count. Ac­
cording to the above equation the computation of the partial derivatives 
of an error function E is used to measure how well the network is able to 
classify presented patterns. Several such functions have been proposed. 
The most commonly used (and therefore also here implemented) is the 
sum of squares function 

E[w] = ~(L L[(t - Of]2) 
/J i 

(2) 

where ( is used for the desired and 0 for the actual output. The double 
sum is necessary since the perceptron used in the described research 
work was trained in batch mode and jJ denotes the presented patterns. 

The output of each neuron has to be defined by another mathematical 
function, the so called activation function. Again several functions have 
been employed and one of the most important is the sigmoid function 

1 g( h) - ---::----:­
- 1 + exp[-,Bh] 

(3) 

where h is the sum of the weighted inputs to the neuron and ,B the 
steepness parameter. 

The computation method mainly defined by (1) is known as gradi­
ent descent and its properties have been documented by many authors 
([Hertz et al., 1991], [Rumelhart and McClelland, 1986]). Since the 
method is inherently slow, great efforts have been taken to improve the 
speed by introducing new parameters (momentum [Plaut et al., 1986], 
adaptive parameters [Jacobs, 1988], individual learning rate [Silva and 
Almeida, 1990] etc.). 

However, there are only a few parameters allowing for improvement 
and their interaction is rather complex. This is the reason why most 
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methods, though based on the mathematical properties of the formulas, 
are empirically derived. 

The learning rate 17] scales the computed weight change and has there­
fore the biggest influence on learning speed. Ideally it must be large 
enough to ensure fast convergence towards the error minimum without 
overshooting it. The steepness ,8] determines the steepness of the acti­
vation function in the sensitive area (input between ±6 approximately). 
The larger this value is, the closer the activation function gets to the step 
function, which means increasing insensitivity to different input values 
with the output becoming more polarized towards the upper and lower 
bound (0 and 1 respectively). The momentum parameter influences the 
learning rate according to the learning history and is therefore an adap­
tive method already. 

In conventional backpropagation these parameters are constants cho­
sen before computation starts. Adaptive methods follow the idea to 
change parameters from iteration to iteration by observation of one or 
more criteria. Commonly employed in non-fuzzy methods is the deriva­
tive of the error function with respect to the single weights. The idea is 
to use the change in the sign of the derivative as an indicator that the 
error function minimum for the weight was overshot. A previous paper 
[Jacobs, 1988] collected a number of heuristic rules for the adaptation 
of single learning rates (each weight is assigned its own learning rate) 
which form the basis of most adaptive approaches. 

3 Fuzzy Parameter Adaptation Methods 

It has already been mentioned that most of the suggested improvements 
are largely derived from empirical observations. This is an ideal field 
for application of fuzzy logic, the idea being to integrate the empirical 
knowledge in a fuzzy rule base that allows an automated adaptation of 
the speed influencing parameters. An additional benefit will be the fact 
that the derived percept ron is a self adaptive system where no particular 
values must be chosen prior to the start of computation. Of course there 
is the necessity to initialize the parameters but the choice does not effect 
the efficiency of the learning run. 

The use of fuzzy logic for parameter adaptation has been proposed 
by several authors, e.g. [Arabshahi et al., 1992], whose algorithm will be 
referred to as FA1, and [Xu et ai., 1992]). The method introduced in 
this paper (called FA2) is an extension of their research work suggesting 
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an entirely different rule base. The major departure with this rule base 
is the computation of a learning rate within an (theoretically) unlimited 
range. 

Compared to the non-fuzzy methods mentioned, the fuzzy methods 
proposed so far (including this paper) use only one learning rate parame­
ter for all weights. It is therefore not useful to apply the error derivative 
criterion described in the previous section. Instead every approach to­
wards learning rate adaptation must consider the change in (overall) 
error. 

The main observations are listed and complemented by additional 
statements from further empirical studies made for this research to give 
the foundation for a rule base. It should be noted that all descriptions 
are qualitative at this stage. Actual quantities will be incorporated in 
the membership functions. 

1. A high error means being far away from the minimum. Hence the 
learning rate should be high. 

2. The change of the error (CE in short) from iteration to iteration 
is the most important and significant measure: 

CE(t) = E(t) - E(t - 1) . (4) 

As long as it is high the learning rate can be increased quite safely. 
Negative CE indicates that the minimum has been passed. 

3. Since the idea is to use a very large learning rate if possible it is 
important to know when to decrease it again as to avoid an over­
shot. The experiments have shown that the most reliable measure 
is the second change of error. Originally only the sign of this value 
was regarded. Positive sign means an increase in CE which in turn 
means it is safe to increase the learning rate. But it also proved 
beneficial to take the magnitude of this value into account because 
it contains information about the trend in CE: Even if CE remains 
positive for consecutive iterations, its decrease gives an early hint 
that the minimum is being approached. To be independent of the 
magnitude of CE the QCE-measure is introduced as a quotient 
computed as 

QCE = CE(t)/CE(t - 1) . (5) 

Values of QCE smaller than 1 should lead to a decrease of the 
learning rate. 
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(a) CE (b) QCE (c) *"., 

Figure 1: Membership Functions 

CE II small I medium IQ~!rge very large 

very small small small medium large 
small small medium medium large 

medium small medium medium large 
large small medium large large 

very large small medium large large 
Output Parameter : *"., 

Table 1: Rule Base for the Learning Rate 

These statements are introduced under the assumption that the error 
surface for each weight can be approximated by a parabola, so that an 
approximation of the minimum means a flattening of the curve and hence 
a decrease in the change of error. Now the rule base for the learning rate 
can be easily derived and is given in table l. 

The result of the fuzzy computation is a factor *"., used for multipli­
cation with the learning rate of the current step to compute the learning 
rate of the next step according to the formula 

(6) 

The quantitative realization of the rule base parameters in the form of 
membership functions that can be implemented directly are shown in 
figure l. 

In [Xu et al., 1992] it was shown that further speed improvement can 
be achieved by combining the learning rate adaptation with that of the 
steepness parameter. So it seemed useful to try this for the new method 
as well. According to the mentioned article a rule base for the steepness 
can be derived from the following statements: 
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E 
very small very large 

very small 

Table 2: Rule Base for the Steepness 

1. If the error is large then the output of the neurons is far from 
the expected result. Therefore the steepness should be quite small 
so that the interconnections of the neurons are not driven into 
saturation. 

2. When the error becomes smaller the steepness value should grow to 
adjust the weights quickly and precisely towards the correct values. 

Since it was not yet possible to conduct an extensive research in how 
the new method of learning rate adaptation is related to changes in the 
steepness, the rule base and membership functions suggested in [Xu et 
ai., 1992] were changed only slightly on an intuitive basis. The modified 
rule base is listed in table 2. 

In the actual implementation of the outlined principles it proved nec,­
essary to add some enhancements. The high learning .rate will, despite 
the measures described, occasionally lead to an overshot. Hence only 
steps that decrease the error function are allowed. Otherwise the algo­
rithm will return to the second last iteration and compute a new learning 
rate by simply decreasing the current one. The experiments have shown 
that the most reliable way to ensure a successful iteration is to use a 
factor that will decrease the rate by an order of magnitude. 

It is also necessary to observe the learning rate to prevent it from 
falling below a minimum level. Otherwise the algorithm will get stuck, 
since no significant changes to the results can be made. So a lower bound 
for the learning rate is introduced and if it is reached, the learning rate 
is set to a fixed value instead. 

Finally, when dealing with a variable steepness parameter, it is im­
portant to understand the following connection: In the update formula 
for the weights (1) the steepness occurs as a factor multiplied with the 
learning rate, in effect increasing or decreasing it depending on whether 
it is larger/smaller than 1 (this equation is part of the computation for­
mula for the error derivatives; see [Hertz et ai., 1991]): 

g'(h) = f3g(1 - g) . (7) 
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This is probably the main reason for the non-convergence of conven­
tional BP if the steepness is chosen too high, since the resulting effective 
learning rate can easily lead to oscillations. To prevent this effect the 
implementation proposed in this paper uses a modified update formula: 

TJ BE 
w··(t + 1) = --- + w··(t) IJ fJ !:l IJ· 

UWij 
(8) 

4 Results 

One of the main problems in comparing results is the wide variety of 
parameters that have to be chosen initially. This includes many that have 
not been considered in this research work such as weight initialization 
and number of hidden layer neurons. 

To develop the BP-approach discussed in this paper a set of botanical 
data, the Iris-data of Anderson [Anderson, 1935] has been selected. The 
data are a set of four-dimensional vectors, each of which represents sepal 
length, sepal width, petal length and petal width of one of three Iris sub­
species Setosa, Versicolor, and Virginica. Measurements are taken from 
50 plants for each subspecies. The data set is divided into a training­
and a test set, each of them consisting of 75 vectors. 

The initial weight values were chosen with a randomization algorithm 
in the range of ±1 but were identical for all compared methods. A two 
layer perceptron was implemented with 4 inputs, 3 outputs and 3 hidden 
layer neurons. The initial values for the crucial parameters learning rate 
and steepness were set to 1. Figure 2 shows the behaviour of the error 
over the iteration steps for three implementations to compare the two 
mentioned fuzzy-methods with conventional BP. 

The diagram shows how the learning process benefits from the learn­
ing rate adaptation. There is a high gain of speed for FA1 already. The 
proposed new method FA2 performs still better, decreasing the error 
rapidly from the very beginning. It can be seen that the acceleration 
effect wears out after approximately 1000 iterations with the learning 
curve becoming flat. But at that point a very high classification rate is 
already reached. The error function is important as a means to show the 
overall learning speed of an algorithm on the training set. But the suc­
cess of the network learning is primarily evaluated by the performance 
on the test set. 

Two facts should be noted: A total classification success in the train­
ing set (100% corresponding to an error of 0) is not necessarily desirable 
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Figure 2: Error Function comparison for three implemented methods 

since it can mean that the Network has perfectly memorized the train­
ing set but is not able to generalize. On the other hand the actual 
classification ratio of the test set is also dependent on the quality of the 
presented data patterns. For the same data set the best achieved result 
reported [Halgamuge et ai., 1993a] under another classification method is 
a classification ratio of 98.67% on the test data. Therefore the presented 
algorithm performs well. The trend that shows in the error function is 
confirmed by the classification ratio. The high value of 88.0% on the test 
set is reached by FA2 after only 400 iterations. After 2000 iterations it 
reaches the maximum classification rate of 90.67%. A threshold value of 
0.5 is used to decide finally whether the output should be considered as 
o or l. 

There is only a very modest gain in speed when the steepness is fuzzy 
controlled, but it is not unlikely that further research in the connection 
of learning rate and steepness is able to suggest a better rule base that 
can improve the behaviour. 

It was already mentioned that for every learning run there is a certain 
number of failed iterations not shown in the above statistics. The ratio 
of failed to successful iterations is fairly constant at around 15% which 
has only little effect on the performance of the algorithm. 

Bearing in mind that a lower limit has been implemented for the 
learning rate (0.2) it can be seen that 1/ varies over a range of five or­
ders of magnitude. That is a considerable difference to the values that 
are reached with FA! or recommended in conventional BP. They can 
only work because the fuzzy control is able to react immediately to the 
network behaviour. 

Having obtained these promising results with the new method the 
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simulations were expanded to other data sets in order to confirm the 
applicability to general problems. Two more data sets dealing with real 
world type of problems: sensor data for road surface recognition of a 
moving car [Halgamuge et al., 1993a] and data from a laser scanner 
for recognition of solder joints [Halgamuge et al., 1993b] are used. Thll 
results obtained under the same circumstances as for the Iris-data are 
analysed and validated. Figure 2 (b) shows the behaviour for solder joint 
recognition. 

5 Discussion 

The presented results show the advantage of the newly proposed method 
as compared to conventional BP and previously suggested methods of 
fuzzy adaptation of the learning rate. The results obtained with the Iris­
data that were used to develop the new method are confirmed by further 
simulations with different data sets. So it can be safely concluded that 
the new method will produce good results when applied generally. 

Additional benefits of the new method are the simplification in the 
initial choice of parameters and the fact that the computation of the 
adaptive parameters (namely the learning rate) is independent of the 
size of the network (as opposed to methods that use single learning 
rates for every weight). However, with ever increasing performance of 
parallel computing systems it would be very interesting to find out how 
fuzzy logic can improve on single learning rates ([Halgamuge and Glesner, 
1994a]), since very good results have been reported for non-fuzzy meth­
ods applied to their adaptation ([Silva and Almeida, 1990], [Fahlman, 
1988]). 

Finally it must be mentioned that there is also a potential for im­
provement in conducting further research in the connection between 
learning rate and steepness that can lead to a better rule base for the 
steepness than the somewhat intuitive one presented here. 
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3.5. Building Neural Fuzzy Controllers 
with NEFCON-I 

DeUef N auck 

1 Introduction 

141 

Combinations of neural networks and fuzzy controllers that are known 
from recent publications are mostly cooperative in nature. This means 
a neural network is used to learn either fuzzy sets or fuzzy rules, and 
the results are used to build a conventional fuzzy controller. Hybrid 
approaches on the other hand try to find a new kind of architecture that 
unifies neural networks and fuzzy controllers. Some of these approaches 
have problems when it comes to the interpretation of the learning results. 
This is especially true, when a pure neural architecture is used. 

The NEFCON model presented in this paper has the advantage to 
be both interpretable as a neural network with fuzzy sets as its weights, 
and as a fuzzy controller. The learning algorithm based on this model 
does not result in structural changes, and does not affect the semantics 
of the underlying fuzzy controller. The learning procedure uses a fuzzy 

error measure to change the fuzzy sets in the system. The fuzzy error 
describes the current state of a system to be controlled, and controls a 
reinforment learning algorithm as it is similarly used for neural networks. 

2 The NEFCON-Model 

The following considerations refer to a technical System S of n state 
variables 6 E Xl, ... ,~n E Xn and one control variable TJ E Y. Each 

t X · 1 . .. d b f (i) (i) d se i, t = , ... , n IS partltlOne y Pi uzzy sets III , ... , IlPi' an 
the set Y is partitioned by q fuzzy sets Vl, ... , Vq which are associated 

. h h l' .. A(i) A(i) dB' WIt t e mgUlstlc terms 1 , ... , Pi' an l, ... , Bq respectively. The 
knowledge about the output variable TJ is described by k linguistic control 
rules Rl , ... ,Rk [Kruse et aI., 1994]. 

Fig. 1 displays an example of a NEFCON system. The model is con­
sistent with a tree-layer feedforward neural network. The units of the 
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Figure 1: A NEFCON system with two inputs and five rules 

input layer just receive and propagate the external input values without 
further processing. But in case that the input values have to be trans­
formed, the input units have to do it. The units of the hidden layer 
represent the linguistic rules, and their activations are determined by 
the matching degrees of their antecedents. The output layer has only 
one output unit that delivers the crisp value used as a control action 
applied to the dynamical system S. 

The connections between the layers of a NEFCON system are differ­
ent compared to usual neural networks. There are links which share a 
common weight. In Fig. 1 e.g. the connections between the input unit 
6 to the hidden units Rl and R2 carry the same weight Pll ). A learning 
algorithm has to consider shared weights, and has to apply the same 
changes to all links that share a common weight. 

The weights of the connections are fuzzy sets. The weights between 
input and hidden layer represent the rule's antecedents, and the weights 
between hidden and output layer are the fuzzy sets of the rule's conclu­
sions. This way the rule base is encoded by the connections, i.e. by the 
structure of the NEFCON system. 

NEFCON has to be interpreted as a special case of a three-layer 
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fuzzy perceptron. To a certain extent, a fuzzy perceptron can be viewed 
as a "fuzzification" of a normal multi-layer perceptron. It is also used 
for function approximation, but it has the advantage that its structure 
can be interpreted in the form of linguistic rules. 

Definition 1 A 3-1ayer fuzzy perceptron is a 3-layer feedforward neural 
network (U, W, NET, A, 0, ex) with the following specifications: 

(i) U = U1 UU2UU3 is a non-empty set of units (neurons), with Uj :f. 0 
and Uj n Uj = 0 for i :f. j, i E {I, 2, 3}. Ul is called input layer, 
U2 rule layer (hidden layer), and U3 output layer. 

(ii) The structure of the network (connections) is defined as 
W : U x U -+ F(R), such that there are only connections W(u, v) 
with u E Uj, v E Ui+l(i E {I, 2}). 

(iii) A defines an activation function A" for each u E U to calculate 
the activation a" 

(a) for input and rule units u E U1 U U2 : 

A" : R -+ R, a" = A,,(net,,) = net", 

(b) for output units u E U3 : 

A" F(R) -+ F(R), 

a" A,,(net,,) = net". 

(iv) ° defines for each u E U an output function 0" to calculate the 
output 0" 

(a) for input and rule units u E U1 U U2 : 

(b) for output units u E U3 : 

0" F(R) -+ R, 
0" O,,(net,,) = DEFUZZ,,(net,,), 

where DEFUZZ" is a suitable defuzzification function. 

(v) NET defines for each unit u E U a propagation function NET" to 
calculate the net input net" 
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(a) for input units u E U1.' 

NETu : R --+ R, netu = exu , 

(b) for rule units u E U2 : 

NETu (R x F(R))Ul --+ [0,1]' 

,T (W(u',u)(ou'))' 
u EU, 

where T is at-norm, 

(c) for output units u E U3 .' 

netu(x) = 

([0,1] x F(R))u2 --+ F(R), 

R --+ [0,1]' 

,1- (T(ou" W(u', u)(x))), 
u EU2 

where 1- is a t-conorm. 
If the fuzzy sets W(u', u), u' E U2 , U E U3 , are monotonic 
on their support, and W-1(u', u)(r) = x E R such that 
W(u', u)(x) = r holds, then the propagation function netu 
of an output unit u E U3 can alternatively be defined as 

1 
LOu' ·m(ou,) 

1 if x = .:;..U'...:::E..:..U-,-;;2 =---
netu(x) = LOu' 

u'EU2 ° otherwise 

with m(ou') = W-1(u',u)(ou')' To calculate the output Ou in 
this case 

0u = x, with netu(x) = 1. 

is used instead of (iv.b). 

(vi) ex : U1 --+ R, defines for each input unit u E Ul its external input 
ex( u) = exu . For all other units ex is not defined. 

The idea of a fuzzy perceptron is the foundation of the NEFCON 
model [Nauck, 1994, Nauck and Kruse, 1994a]. To create a neural fuzzy 
controller the fuzzy controller either has to be represented by a fuzzy 



NEFCON-I 145 

perceptron, or the fuzzy perceptron has to be interpreted in terms of a 
fuzzy controller. For that, restrictions on the choice of connections and 
the determination of the fuzzy weights have to be defined. It is also 
necessary to define linguistic terms to be associated with the weights, or 
the connections, respectively. 

Definition 2 Consider a dynamical system S with n variables and one 
control variable. There are k known linguistic rules describing the control 
actions applicable to S. A NEFCON system is a fuzzy perceptron with 
labeled connections adhering to the following constraints. 

(ii) Each connection between units ei E U1 and Rr E U2 is labelled with 

a linguistic term A;? (jr E {I, ... ,Pi}). 

(iii) Each connection between units Rr E U2 and the output unit 7] is 
labelled with a linguistic term Bi r (jr E {I, ... , q} ). 

(iv) Connections comming from the same input unit ei and having iden­
tical labels, bear the same weight at all times. These connections 
are called linked connections. An analogous condition holds for the 
connections leading to the output unit 7]. 

(v) Let Lu •v denote the label of the connection between the units u E U1 

and v E U2 • For all v, v' E U2 holds: 

((V u E Ud Lu •v = LU.V') ==> V = v'. 

This definition allows to interpret a NEFCON system in terms of 
a fuzzy controller. Condition (iv) makes sure that identical linguistic 
values of a variable are represented by exactly one fuzzy set. Condition 
(v) determines that there are no rules with identical antecedents. 

The procedures within the neural fuzzy controller correspond to those 
of a feedforward neural network. The input units represent the crisp in­
put values and propagate them to the rule units. Their propagation func­
tion calculates the membership values with respect to the fuzzy sets of 
the connections between input and hidden layer, and derives the match­
ing degrees of the respective rule antecedents by a t-norm. These values 
are represented by the activations of the rule units. 

The rule units pass their activation values on to the output unit, and 
its propagation function combines the matching degree with the fuzzy 
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set of the respective link between rule and output unit, calculating an 
output fuzzy set this way. At last the single rule outputs are accumulated 
to the overall output in a way that is consistent with the fuzzy control 
model and the learning algorithm. 

The learning procedure needs a crisp output value from each rule. 
This means there has to be a defuzzification before the accumulating 
the single results, or the membership functions of the conclusions are 
monotonous over their support so they can be inverted. NEFCON uses 
the second alternative (see def. 1). 

3 Fuzzy Error Backpropagation -
The Learning Algorithm 

The goal of the learning algorithm is to adapt the membership func­
tions ofthe controller, given adequate linguistic control rules but a non­
optimal modelling of the fuzzy sets due to a lack of knowledge [N auck 
and Kruse, I992a, Nauck and Kruse, I992b]. The task of the controller 
is to drive the system 5 to an optimal state. But usually a state of the 
system is also conisidered as good, if this optimum is only reached ap­
proximately. Therefore it is adequate to describe the goodness of a state 
by linguistic terms that are represented by fuzzy sets. By this a fuzzy 
error can be derived that characterizes the performance of the neural 
fuzzy controller. 

There are two cases in the judgement of the system state. In the 
first case the system 5 is in a near optimal state, where all variables 
have near optimal values. In the second state they may have undesired 
values, which compensate each other, however, in a way that the system 
is on its way to an optimal state (compensative situation). 

Definition 3 Consider a dynamical system 5 with n state variables 
6 E X I, ... , ~n E X n , and s known compensative situations. Further­
more there are given n fuzzy sets J.l~iJt: Xi -+ [0,1]' (i E {I, .. . ,n}) and 

s n-ary fuzzy relations J.l~jmp : Xl x ... X Xn -+ [0,1]' (j E {I, ... , s}), 
describing the optimal values of the state variables, and the compensative 
combinations of values, respective/yo The current state values are given 
by (Xl, ... , xn). The fuzzy goodness G of the system 5 is defined as 

G Xl X ... X Xn -+ [0,1]' 

g (Gopt(XI, ... , xn), Gcomp(XI, ... , xn)) , 
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where 9 is a suitable function to combine the measures of goodness with 
respect to S. G consists of the optimal fuzzy goodness Gopt : 

Gopt Xl X ... X Xn - [0,1]' 

{ (1») (n»)} T J-topt(X1, ... , J-topt(Xn , 

and the compensative fuzzy goodness Gkomp : 

Xl X ••• X Xn - [0,1]' 

The fuzzy error E of a NEFCON system controlling S is defined as 

E: Xl x ... X Xn - [0,1]' E(X1, ... ,xn ) = 1- G(X1, ... ,xn ). 

Instead of using the definition 3 it is also possible, to describe the 
fuzzy error by means of linguistic rules. This is done by NEFCON-1. 
The learning algorithm based on the above defined fuzzy error is called 
fuzzy error backpropagation. The learning procedure can be compared 
to backpropagation, but there is no error value depending directly on 
the output value, so we have a type of reinforcement learning. 

The individual part that each rule has in the control value is used to 
determine the changes by the learning algorithm. This is difficult, if the 
conclusions are accumulated to a single fuzzy set that has to be defuzzi­
fied. Most neural fuzzy approaches that do not use stochastic learning 
procedures therefore use either special membership functions [Berenji, 
1992] or special defuzzification procedures [Berenji and Khedkar, 1992] 
that are applied before the accumulation. 

The approach discussed here uses Tsukamoto's monotonous member­
ship functions for the conclusions which enables a rule to directly supply 
a crisp value according to its matching degree [Lee, 1990a, Lee, 1990b]. 

For each rule unit Rr with an activation Or > 0 it has to be decided, if 
its part tr it has in the control value has a positive or negative influence, 
resulting in a "reward" or a "punishment". In addition to the fuzzy error 
it has to be known, whether the (unknown) optimal control value T70pt 
has to be positive or negative. 

The amount of change for the membership function of each rules 
depends on its fuzzy rule error: 

ERr = { -ORr' E if sgn(tr) = sgn(T7opd 
ORr' E otherwise. 
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.......... before -- afterwards 

Figure 2: Adapting the membership functions (rewarding) 

The changes in the conclusions and the antecedents are defined as 
follows (see also Fig. 2): 

t!..d· = (1 . ER . Id· - e· I Jr r Jr Jr 

where (1 > 0 is a learning rate, and Rr is connected to TJ by vir. 

A (i) 
ua· 

Jr 

A (i) uc· 
Jr 

where ~i is connected to Rr by J1.)? Shared weights are changed repeat­
edly. In [Nauck and Kruse, 1993, Nauck et al., 1994] an extension of the 
learning algorithm is presented, that enables the model to learn fuzzy 
rules, too. 

4 NEFCON-I - An Implementation 

NEFCON-I is a graphical simulation environment for NEural Fuzzy 
CONtrollers developed at the Dept. of Computer Science, TV Braun­
schweig (see Fig. 3). It lets a user define a neural fuzzy controller and 
train it [Nauck and Kruse, 1994b]. The user defines the linguistic vari­
ables and an initial partioning with membership functions. He can decide 
to enter the rule base or to let NEFCON-I learn the rules. After the 
fuzzy error is defined in terms of fuzzy rules, NEFCON-I can be trained 



NEFCON-I 149 

-: ~ .......... 
~wttlub· 

~ ... '" .. " .. .. .. .. 
< 

... ... ... 
w .. ... '" '" '" I , ~ ... - - " • , .. ... '" ... 
C .. or ,. .. • ~ w .. .. .. .. pb · .. po .. .. .. .. pb .. I 

-
D 
""'- --: ._---- ~ltI'tR]oLM"W:I 

<> ----~-.I!EJ---o ""'Y-.... __ 

• FWzy- ....... .-.... (!j]-

10 ... --
0_-.... 0,-

r;:;l [!i] §] 

Figure 3: The user surface of NEFCON-I 

by exchanging data with a concurrently running program that simulates 
a dynamical system. 

To test the model a simplified version of the inverted pendulum was 
used, considering only angle and angular velocity. Fig. 4 shows the 
partioning of the variable "angle" before and after the learning process. 
The controller was not able to balance the pendulum at the beginning, 
but learned to do it in about 2000 cycles (2 min. on a SUN workstation). 
The changes in the control surface of the neural fuzzy controller are 
shown in Fig. 5. 

NEFCON-I is freely available for scientific purposes by anonymous 
ftp. If you have internet access you can download the source code or one 
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Figure 4: Pendulum and fuzzy sets for angle before and after learning 

.. 

Figure 5: The control surface before and after learning 

of the binaries for special platforms. To compile NEFCON-I you need 
a UNIX workstation running X-Window, and you need the graphical 
software library InterViews 3.1. To run one of the binaries just a Unix 
workstation under X-Window is needed . 

To obtain NEFCON-I you need to connect to ftp.ibr.cs.tu-bs.de 
(134.169.34.15) by anonymous ftp, and change to the directory 
/pub/local/nefcon. There you will find the necessary instructions what 
to download, and how to proceed. 
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4.1. Fuzzy Systems in AI: An Overview 
Christian Freksa 

Abstract 

This paper reviews motivations for introducing fuzzy sets and 
fuzzy logic to knowledge representation in artificial intelligence. 
First we consider some areas of successful application of conven­
tional approaches to system analysis. We then discuss limitations 
of these approaches and the reasons behind these limitations. 

We introduce different levels of representation for complex 
systems and discuss issues of granularity and fuzziness in connec­
tion with these representation levels. We make a distinction 
between decomposable and integrated complex systems and discuss 
the relevance of this distinction for knowledge representation and 
reasoning. We also distinguish fuzzy relations between quantities 
of different granularity within one domain from fuzzy relations 
between two different domains and discuss the need of considering 
both in artificial intelligence. 

We distinguish methods for describing natural. artificial. and 
abstract systems and contrast the modeling of system function 
with the modeling of system behavior in connection with the 
representation of fuzziness. The paper briefly discusses recent 
criticism of the fuzzy system approach and concludes with a 
prospect on soft computing in AI. 

1 Why do we Need Fuzzy Sets and Fuzzy 
Logic in AI? 

The notion of a fuzzy set [Zadeh 1965] and the development ofJuzzy set 
theory andJuzzy logic were motivated by the severe difficulties to adequately 
characterize complex systems by conventional approaches of system analysis. 
"Adequate" means, for example, that insignificant variations on the 
component level of a system should not add up to significant changes on the 
system level. This criterion is an absolute requirement for understanding 
complex systems in terms of their components. 

Conventional approaches represent complex systems in a reductionist 
manner by specifying well-defined components and their individual inter­
actions. We will investigate the question why these approaches are of limited 
use in artificial intelligence and cognitive science. 
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The success of conventional approaches in well-defined systems 

Until fairly recently, most researchers in artificial intelligence believed, AI 
systems could benefit from the same virtues that made much of modern 
science and technology a success: precise measurements, complete knowl­
edge of the domain, and rigorous tools for dealing with them. Before dis­
cussing this belief I will briefly investigate under which conditions dealing 
with precise, crisp, and complete measurements has been successful. 

A fundamental prerequisite for succeeding with high-precision characteri­
zations of complex systems is the availability of basic entities and relations 
suitable for capturing everything that is relevant in the system under con­
sideration. Under this condition, we can decompose complex systems into 
less complex subsystems and/or basic components and we can explain their 
role in terms of the basic components and their interactions. 

Obviously, we can correctly describe complex systems in terms of their 
components when (1) the components conform with their defmitions, (2) the 
interactions conform with their specifications, and (3) no other interactions 
interfere. These conditions certainly hold in abstract systems that are 
specified according to the three conditions given above. Examples are 
complex games defined by simple rules like the board games chess and go. 

The three conditions also can be assumed to hold in technical systems 
whose components can be studied in isolation and whose interactions can be 
restricted to controlled local exchanges. Examples are closed chemical, 
mechanical, and electronic systems. Complex computers and computer 
networks constitute excellent examples that the bottom-up approach to 
characterizing systems on the basis of crisp notions can be highly successful. 

However, the more complex these systems get, the more obvious 
becomes the need for developing high-level views and languages to better 
capture the essential aspects including actions at the relevant system level. 
Thus, the granularity of a description can make a big difference even if fine 
and coarse descriptions of crisp systems can be considered equivalent, in a 
formal sense. 

The problem with ill-defined systems 

The great success in representing complex systems in terms of their 
simple components that could be achieved in closed technical systems may be 
responsible for a blind belief that the same approach could be applied to other 
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complex systems equally well. Let us consider a class of non-technical 
complex systems whose representation in terms of components has caused 
great difficulties: systems of economics or climate systems may serve as 
examples. Why are such systems different? 

In case of an economic system, the three above requirements seem 
fulfilled, at fIrSt glance: (1) monetary units define the economic value of any 
item in basic terms, (2) mathematical rules precisely derive the effects of 
economic transactions, and (3) no other interactions besides transactions 
determine the monetary values on the component level. In fact, the strict 
obedience of the mathematical laws by economic transactions make it 
possible to precisely analyze in quantitative terms why someone became rich, 
became poor, went bankrupt, etc. 

The problem is, that it is not very interesting to have models that only 
can be used for post hoc analysis. In the case of climate systems even the 
post hoc analysis does not carry very far. We would like to build models to 
make predictions! Why is it possible to make predictions on the component 
level for board games but not for economic systems? 

The role of system complexity 

The fact is that practically speaking it is not even possible for board 
games like chess or go to make reliable predictions on the component level 
of description. The complexity of the chess game consisting of only 32 
pieces on an eight by eight checkers board already is too big for analyzing all 
legal moves. Nevertheless, it is possible to build useful higher-level 
descriptions of chess constellations from the basic entities and use these 
descriptions to generate reasonable predictions. 

In systems of economy, in contrast, this approach has not proven 
practicable; condition (3) is severely violated: individual transactions in 
economy systems can not be predicted on the basis of local transactions; 
they are determined by complex global patterns and their dynamics involving 
psychological and other factors which cannot be captured in terms of the 
elementary configurations. 

A similar situation is given in the case of climate systems and weather 
prediction: our knowledge about the preconditions in terms of fundamental 
facts will never be complete enough and our knowledge about the physical 
laws on the local level does not suffice for making useful predictions about 
global or local weather conditions. Thus, system complexity is only one 
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aspect that must be considered; the availability of knowledge and the 
structure of that knowledge also play an import role for the representation we 
can use. 

How does fuzziness come into the picture? 

If we compare systems that are well-defined (from the bottom up) with 
systems that we know primarily from their global properties. we find diffe­
rent mapping relations between the low-level and the high-level notions. The 
high-level notions built up from low-level primitives typically are found in a 
crisp relation to the synthesized complex notions while the low-level notions 
postulated from the high-level concepts are found in a/wry relation. 

For example, a taxonomy of plants and/or animals based on low-level 
primitives will yield a crisp classification of creatures as found in biology 
textbooks. On the other hand, the identification of low-level features for the 
definition of the high-level everyday notion "living animal" yields fuzzy 
relations between the high-level notion and the low-level features. as it is 
impossible to precisely capture the everyday notion universally by composi­
tion of low-level features. In this sense, "living animal" is a fuzzy concept, 
when related to low-level primitives - while on the high level on which we 
typically use the notion it would not be considered fuzzy at all. 

2 The level of representation 
Systems about whose properties we learn from global behavior can be 

described meaningfully on a global level, for example in the case of an econo­
mic system we might know "when the interest rate goes up, the money flow 
decreases". Such a rule implicitly can take into account complex interaction 
regularities which cannot be captured on the component level. Although the 
total money flow results from individual monetary transactions, the rule does 
not hold for each individual transaction. Therefore it is difficult to give 
precise definitions of the global notions in terms of local transactions; it is 
much easier to identify the global effect as the net effect of local transactions 
and to control economy on a global level (e.g. by manipulating the interest 
rate) than through local transactions. 

In the case of weather prediction we encounter a similar situation: on a 
coarse level (which may be relevant for agriculture, for example), predictions 
may be quite reliable, while they may be useless on the level of description 
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on which local measurements of weather indicators (like rainfall per square 
meter) are made. 

As a consequence, by representing complex systems not on the level of 
the most primitive notions but on a coarser level, these systems may become 
tractable. Numerous complex interactions on the local level simply can be 
ignored! Lotfi Zadeh recognized the importance of abstraction from low-level 
properties at an early stage of the artificial intelligence enterprise. He charac­
terized intelligent systems by their ability to summarize complex descriptions 
by abstracting from details. In the case of everyday non-synthetic systems 
this requires taking into account the fuzzy relations between the high-level 
and the low-level features. 

Integrated complex systems 

There is a class of complex systems in which fuzzy relations play a 
particularly important role. This class consists of systems whose 
components cannot be studied in isolation or whose components cannot be 
studied in all relevant conditions. Most natural complex systems belong to 
this class. We can observe global behavior under varied condition patterns; 
from these we infer local influences. 

Examples are biological systems which we describe in terms of presumed 
local functions and observed effects. Neither the description of the global 
effects nor the description of the local functions are suitable to capture all 
possible situations and to crisply represent the system. The reason is, that 
we are bound to use concepts which have a meaning outside of these systems 
(like "living animal") since elementary local components are not available 
and there is no way to guarantee that these concepts precisely match the 
components of the described system. 

Fuzzy relations between different domains 

Fuzzy pattern recognition, fuzzy control, and most other successful 
applications of fuzzy set theory have focused on the fuzzy relation between 
the fine and coarse levels of representation of the artifacts involved. But from 
the inception of fuzzy set theory, its inventor Zadeh also suggested to 
represent fuzzy relations between real entities like physical objects and mental 
entities like concepts which are manifested in natural language expressions. 
In artificial intelligence, this type of relations is of particular interest. 
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Classical artificial intelligence had been focusing its attention on the 
representation structures within the medium computer. Little attention had 
been paid to ontological questions and the actual representation problem, i.e. 
the mapping between what is represented and what is representing [c.f. 
Palmer 1978] and to the problem of building representation structures from 
existing knowledge. Many AI-researchers did not consider this issue a 
problem; they believed, concepts could be used like nuts and bolts to screw 
together intelligent systems and the role of each concept would be clearly 
defined 

But when AI-systems grew up and moved outside their purely synthetic 
laboratory environments it became evident that there was a serious matching 
problem between natural concepts derived from the use and the behavior of 
systems and artificial concepts synthesized from low-level components. It 
became clear that we could not simply view natural concepts as imperfect 
entities whose objectives would be much better served by artificial substi­
tutes. 

Instead. expert system research and research in cognitive science investi­
gated structures and properties of human knowledge in order to exploit its 
potential and to understand more of its function. In this process, fuzzy sets 
have played an important role in characterizing the relation between human 
concepts and natural or artificial entities and in mimicking their interactions 
(c.r. [Zimmermann 1992]. [Dubois et al. 1993], [Kruse et al. 1994]). In this 
way, many of the properties of human thought and natural language, 
specifically with regard to their modification and their combination, could be 
simulated. 

3 Natural systems vs. artifacts 
As argued in the previous sections, the development of fuzzy set theory 

and fuzzy logic were influenced by properties of natural human concepts and 
their relation to entities in the real world. Specifically, Zadeh suggested to 
use fuzzy sets to represent notions like tall and beautiful in natural language 
phrases like The tall dwarf is mort! bt!autiful than the small giant. However, 
the present success in the application of fuzzy set theory is not so much in 
artificial intelligence - e.g. in the representation of natural language expres­
sions or human concepts - but rather in control engineering, e.g. due to the 
improvement of purely artificial systems like household appliances, photo 
equipment, trains, and helicopters [Munakata, Jani 1994]. Why have fuzzy 
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sets not caught on in artificial intelligence to the same degree as in control 
engineering? 

The utility of fuzzy sets in artificial systems is not only due to reduced 
complexity as a consequence of the coarser representation of systems, but 
also due to properties of human concepts which support the engineering pro­
cess of these systems. Fuzzy sets serve as a knowledge transfer vehicle, as a 
way of getting the judgment of engineers into complex systems. They are 
particularly suited for this task since they allow for reasonable representation 
relations even if the representation system is not yet completely understood. 
In this sense, human concepts are involved in the synthetic products of the 
engineers. But does this mean that fuzzy sets represent human concepts? 

The characteristic function which defines a fuzzy set characterizes the 
relationship between real world entities and specific concepts (or labels 
typically associated with concepts); however, it does not model or explain 
how this fuzzy relationship comes about. For certain domains or types of 
tasks, a characterization of the fuzzy relationship between a concept and given 
instances in 'reality' is sufficient (for some tasks even this relationship is not 
required) - but there is an important class of problems which requires going 
beyond the characteristic function. 

Shallow vs. deep modeling 

I will argue that classical fuzzy sets represent human concepts on a rather 
shallow level, on the level of denoting entities within a well-defined frame­
work, a framework in which the relevant dimensions are known, but precise 
values within these dimensions are missing. Human concepts, however, are 
not merely underdetermined physical values. They form a strong system on 
their own which have a meaning and make sense independent of real-world 
instances even though during the knowledge acquisition process they may 
have been derived from such instances. 

In Figure 1, I present a classification of different epistemic qualities of 
knowledge associated with methods appropriate for processing them. On the 
basis of this classification I will suggest ways of extending the fuzzy set phi­
losophy towards representing human concepts on a deeper level. The goal is 
to adapt notions developed in fuzzy set theory and fuzzy logic to make them 
better suitable for processing human knowledge and knowledge representation 
in artificial intelligence. 
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Knowledge available 
through formal 
methods 

Certain 

/'\. 
incomplete I 
(open wor1d) I 

complete 
(closed world) 
Hom clause 

logic 
Predica/1te 

logic 

I 
statistical I 

model I 
/statistics 

formal 
derivation 

crisp 
uncertain 

knowledge 

disjunctions 
intervals 

Uncertain 

Cognitively 
available 

knowledge 

/,'" quantifiable I comparable 
uncertainty uncertainty 

fuzzy 
uncertain 

knowledge 

(technical 
domains) 

fuzzy logic 

I 
I 
I 
I 
I 
I 

qualitative 
model 

e:t:::::a/\ 
bution 

fuzzy fuzzy uncertain 
uncertain knowledge 

I knowledge 
(abstract 

I (natural physical cognitive 
I world) domains) 

I conceptual 
I neighborhood 

ABSTRACT 
WORLDS 

I ARTIFICIAL 
I REAL WORLD 

NATURAL 
REAL WORLD 

Figure 1: Classification of knowledge types on the hasis of 
accessibility criteria 



Fuzzy Systems in AI 163 

A classification or knowledge types 

The classification of knowledge types presented in Figure 1 distinguishes 
different types of situations in which knowledge can be acquired. I will first 
present the distinctions made in this classification and subsequently I will 
associate types of approaches which appear suitable for dealing with the 
respective situations and knowledge. 

The top-level distinction in this classification is made between certain 
knowledge and uncertain knowledge. Certain knowledge is only available in 
abstract domains where facts and rules can be postulated to be true. Knowl­
edge obtained from concrete domains are subjected to uncertainty, due to limi­
tations in modeling and knowledge acquisition. Certain knowledge may be 
further classified into complete knowledge in which the non-existence of a 
true fact is equivalent to the existence of the negated fact (closed world 
assumption) and incomplete knowledge in which this assumption is not 
generally valid. 

Uncertain knowledge can be further classified into knowledge with quanti­
fiable uncertainty, i.e. knowledge with which we can associate an absolute 
degree of uncertainty, and comparable uncertainty, i.e. knowledge that we 
merely can rank according to relative degrees of uncertainty. 

Uncertainty may be due to statistical effects, due to incomplete knowl­
edge, or due to fuzziness; accordingly uncertainty can be quantified on the 
basis of statistical models or on the basis of functional models. Statistical 
models can be classified according to the source of the probability distribu­
tion: are the probability distributions derived from a formal model on the 
basis of assumptions about the processes involved (e.g. each face of a die is 
equally likely to be thrown) or from empirical observations. 

In the class of functional models of uncertainty we can distinguish 
between those yielding crisp sets of possible values and those yielding fuzzy 
sets. The crisp sets may be either intervals (in the case of continuous 
domains) or disjunctions (in the case of discrete domains). Fuzzy sets can be 
obtained when the functional dependencies are clearly enough dermed to allow 
for a quantitative characterization of the elasticity of constraints. This is the 
case in synthetic domains in which fuzzy membership values can be derived 
from the system specifications. For an interesting illustration of the 
advantages of studying synthetic systems rather than natural systems, see 
Braitenberg's experiments in synthetic psychology [Braitenberg 1984]. 
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In the domain of natural language or other natural domains, quantitative 
membership values generally are not available; but frequently membership 
values can be compared like in"I would rather say 'John is tall' than 'John is 
very tall'''. Such comparisons lead to qualitative models of uncertainty. We 
can further distinguish between fuzzy uncertain knowledge about the natural 
physical world where we may have empirical sensory evidence for compara­
tive uncertainty judgments and fuzzy uncertain knowledge about abstract 
cognitive domains where it is not possible to identify objective correlates to 
the comparative judgments. 

In summary, this classification yields three different major types of 
knowledge processing situations: 1) The situation of abstract domains in 
which we work on the basis of formal specifications; here we either deal 
with complete certainty or with well-controlled uncertainty. 2) Real-world 
situations which are well-controlled in the sense that we know all relevant 
factors and the possible extreme situations; this is the case in many technical 
domains whose function in principle could be completely described on the 
basic level by exhaustive analysis; such artificial domains are ideal for the 
application of classical fuzzy logic. 3) In artificial intelligence, we are fre­
quently confronted with situations in the natural world in which the available 
knowledge does not justify a quantitative fuzzy set approach; in particular, 
we must deal with open worlds in which representations in terms of numeri­
cal membership functions do not make sense; instead, qualitative knowledge 
may be available. For this type of situation, more adequate representational 
approoches are needed. 

I would like to suggest that fuzzy reasoning may become as successful as 
fuzzy control and will be useful for natural language processing and other AI 
applications when it is integrated with deep conceptual representations of the 
domain and of the language describing the domain. In particular, the 'hori­
zontal' dimension connecting cooperating and competing concepts must be 
exploited in addition to the 'vertical' dimension which connects concepts with 
their definitions. This horizontal dimension is required for determining which 
concepts are to be used in the first place. Depending on this selection, fuzzi­
ness mayor may not playa role for the given task. 

A possibility for extending the scope of fuzzy reasoning on the basis of 
the notion of conceptual neighborhood is currently being explored by the 
author. The notion of conceptual neighborhood was introduced in the context 
of qualitative temporal and spatial reasoning [Freksa 1992]. It addresses the 
logical structure of the represented domain under the operations that can take 
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place in the domain. Specifically. two relations are conceptual neighbors 
when there is an operation in the represented domain which can transform one 
of the two relations into the other. Conceptual neighborhood can be used to 
represent horizontal relationships between concepts and to form coarse con­
cepts from fine concepts and vice versa. 

4 Criticism of the fuzzy systems approach 
In a prize-winning article. Charles Elkan expressed his surprise about the 

success of fuzzy logic [Elkan 1993]. Specifically. Elkan attempts to show 
formally that fuzzy logic collapses to classical tw<rvalued logic and he argues 
that it is not adequate for reasoning about uncertain evidence in expert 
systems from an empirical perspective. Elkan's overall judgment is that 
fuzzy logic is fundamentally wrong and will cause serious problems in more 
challenging applications. 

Like Zeno's famous ancient paradoxes [c.f. Vlastos 1967], Elkan's para­
dox appears rather convincing at first glance, when the reader submits himself 
to the formal framework used by the author. However, a more careful analy­
sis of Elkan' s argument reveals that - like Zeno - he presents a restricted 
view. He does this by forcing a norion of equivalence valid for two-valued 
logic on the analysis of fuzzy logic. In this way, Elkan addresses only 
special cases in which two-valued and fuzzy logic in fact are equivalent [ef. 
Shastri. to appear]. It is easy to provide numerical counterexamples to 
Elkan's equivalence assertion using standard notions of fuzzy sets for inter­
mediate truth values. 

Limitations of formal analysis 

I will take the occasion of this attack on fuzzy systems on the basis of 
purely formal arguments to draw your attention to an important issue of 
knowledge representation systems which in principle cannot be resolved by 
formal analysis. Formal analysis helps us to understand systems which are 
entirely formal. However, in representing knowledge about the real world. 
one part of the system is the body of knowledge to be represented. another 
part is the representing formal structure. and a third part establishes the rela­
tions between the body of knowledge and the formal structure [c.f. Palmer 
1978]. 

Only the second part. the formal structure. can be rigorously analyzed 
formally. The first part, the body of knowledge is not accessible with formal 
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tools directl:y; human perception and/or intuition present the knowledge to be 
represented by the formalism. The representation of the knowledge can be 
only as good as our understanding of the structure of the knowledge itself! 
For example, if we take a natural language statement like "John is tall" 
merely as a different way of writing the predicate logic statement tall (John) 
is true, then we will never be able to reach aspects of the original statement 
which are not coded in the predicate logic 'equivalent'. We easily can become 
victims of the same kind of fallacy Charles Elkan was subjected to when he 
viewed the world of fuzzy logic through the glasses of two-valued logic. 

In reasoning about the real world, making formally sound inferences is 
only one aspect Equally important - but much more difficult than widely 
believed - is to adequately formalize real world knowledge in the fITSt place. 
The "paradoxical success" of the fuzzy logic approach in restricted domains 
may be considered as an indication that clearer perception or sharper intuition 
about the relation between the domain knowledge and the domain states have 
been involved in the knowledge formalization process. Of course, having 
found a new representation structure, we must develop appropriate reasoning 
methods to go along with. 

It may well be impossible to find methods which will both fit the more 
adequate representation structure for real world phenomena and satisfy the 
classical criteria of formal analysis such as logical equivalence. Nevertheless, 
the resulting inferences may be more useful than formally correct inferences 
on the basis of less adequate knowledge structures. The notion of representa­
tional adequacy is not yet sufficiently understood. 

5 Soft computing 
Fuzziness is one of several aspects of our knowledge about the real world 

which must be taken into account in knowledge representation and proces­
sing. In general, we must deal with imprecision, uncertainty, and partial 
truth. The human mind can be viewed as a working realization of a system 
which rather successfully deals with all of these aspects simultaneously. In 
contrast to conventional (hard) computing approaches, systems that are 
tolerant of these aspects of everyday knowledge are united by the label soft 
computing. 

The guiding principle of soft computing is: Exploit the tolerance for 
imprecision, uncertainty, and partial truth to achieve tractability, robustness, 
and low cost solutions [Zadeh 1994]. The basic ideas underlying soft 
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computing have links to many early influences of fuzzy set theory, including 
Zadeh's original publication on fuzzy sets [Zadeh 1965], his paper on the 
analysis of complex systems and decision processes [Zadeh 1973], and his 
paper on possibility theory and soft data analysis [Zadeh 1981]. 

Besides fuzzy logic, probabilistic approaches for reasoning under uncer­
tainty and related models for belief maintenance and revision play an impor­
tant role. In artificial intelligence, Pearl's probabilistic reasoning in Bayesian 
networks, Nilsson's probabilistic logic, the certainty factor model used in the 
MYCIN expert system for medical diagnosis, Dempster-Shafer's theory of 
evidence have attracted much attention (c.f. [LOpez de Mantaras 1990], [Kruse 
et al. 1991]). In the mid 1980s, neural network theory also joined into the 
soft computing effort. 

Combining different approaches to soft computing 

It has become evident during the past ten or twenty years, that no single 
approach to the study of cognitive or intelligent processes will succeed in 
understanding the interactions of cognitive agents with complex environ­
ments and no single approach to representing complex knowledge will fulfill 
all our requirements. Successful AI approaches must take into account 
effectiveness, efficiency, timeliness, robustness, adequacy, and cost of the 
solutions. Classical requirements like provability of correctness and 
completeness of the solution can be expected as little from computer systems 
reasoning about complex situations as from humans in the same situation. 

After an era of increasing specialization in almost all areas of research and 
technology, we have now entered an era in which the interaction of 
approaches is of particular importance and concern. This is true for nwnerous 
areas, but interdisciplinary efforts like cognitive science and multi-approach 
efforts like the Berkeley Initiative in Soft Computing (BISC) might serve as 
examples. Such efforts require a considerable amount of re-orientation, as we 
have to recognize that the former competitors must become partners. 

Although fuzzy set theory and fuzzy logic have faced strong opposition 
from conventionally oriented theoreticians in artificial intelligence and logic 
during the past 30 years, the rapidly growing number of successful applica­
tions developed mainly in Japan have shifted the focus of interest from local 
formalistic concerns to global system considerations. As in the case of the 
Fifth Generation Computing Project in the early 80s it required the Japanese 
challenge before European and American opposition was matched by a 



168 Fuzzy Systems in AI: An Overview 

growing interest in the industry and an increased willingness by theoreticians 
to understand the principles of soft computing. 

In Europe. we now find an increasing interest in the theory and applica­
tions of soft computing techniques in artificial intelligence. This is evident 
from the growing number of fuzzy logic workshops and soft computing 
contributions to artificial intelligence conferences, from the establishment of 
special interest groups in fuzzy logic and soft computing (e.g. within the 
German computer science society) and from the growing number of tutorials 
offered both by the industry and by academic institutions. 

Three papers on specific topics of fuzzy reasoning 

In the remainder of this chapter you find three articles dealing with soft 
computing for artificial intelligence. 

The article by Sascha Dierkes. Bernd Reusch. and Karl-Heinz Temme 
presents a tool for supporting the representation of fuzzy knowledge and for 
fuzzy reasoning in an experts system shell. 

The article by Jorg Gebhardt uses the possibilistic interpretation of fuzzy 
sets in the context of model-based reasoning. The approach described in the 
paper allows for evidential reasoning in multidimensional numerical 
hypothesis spaces under imprecision and uncertainty. 

Jochen Heinsohn presents a language to extend the taxonomic knowledge 
representation approach of terminological logics by a probabilistic knowledge 
representation component. In this way uncertain knowledge can be included 
in the reasoning process. 
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Possibilistic Reasoning in 
Multidimensional Hypotheses Spaces 

Jorg Gebhardt 

Abstract 

This paper introduces a relational approach to possibilistic 
reasoning in knowledge-based systems. We consider a possibilis­
tic focusing system, where qualitative knowledge on existing de­
pendencies among attributes is represented with the aid of a hy­
pergraph, and uncertainty about these relationships in terms of 
possibility distributions. Besides an outline of some basic con­
cepts, we discuss an application and compare the framework with 
Bayesian networks. 

1 Introduction 

Restricting ourselves to pure numerical environments, this paper in­
troduces a framework for possibilistic reasoning. In particular, sec­
tion 2 proposes a relational setting for imprecise reasoning in a mul­
tidimensional space of attributes. Considering a universe of discourse 
U = (Oi)iEN, where Oi denotes the domain of the i-th attribute, and 

o ~ XOi the induced product space, we suppose that general knowl-
iEN 

edge R about relationships between attribute values as well as evidential 
knowledge E about a specific object state Wo E 0 under consideration is 
characterized in terms of relations R ~ 0 and E ~ O. Then we introduce 
the concept of a focusing system, which specifies qualitative dependencies 
between attributes by means of a hypergraph (N, rot), whereas quantita­
tive dependencies are expressed by a rule system n(U, rot), consisting of 
relations RM, referred to the attributes identified by all indices contained 
in M E rot. 
Incorporating uncertainty aspects and therefore generalizing from im­
precise to possibilistic knowledge, section 3 introduces the concept of a 
possibilistic focusing system and its semantic background. 

This work has been partially funded by CEC-ESPRIT III Basic Research Project 
6156 (DRUMS II) 



172 Fuzzy Systems in AI 

Finally, section 4 is a short discussion of possibilistic vs. probabilistic 
reasoning in causal networks. In this connection we outline an example, 
where reasoning in a possibilistic focusing system has turned out to be 
a promising alternative of its probabilistic counterpart. 

2 A Relational Setting for Imprecise Rea-. sonlng 

Let A = {al, ... , an} be a set of attributes that characterize an ob­
ject under consideration and Oi = Dom(ai), i = 1, ... , n, their at­
tached (finite) domains. Stating the closed world assumption, the cur­
rent state of this object is expected to be specifiable in terms of a tuple 

(wo(1>, ... ,wo(n» = wo, with wO(i) E Oi and wo E 0 ~ :XOi' 
i=1 

Independent from what ~ind of reasoning problem we intend to investi­
gate, it is appropriate in our setting to presuppose that general knowledge 
about relationships between the chosen attributes is formalized by means 
of a relation R S;;; 0, whereas evidential knowledge (to be interpreted as 
additional information on the specific object state wo) is specified by 
another relation E S;;; O. 

In standard cases of practical interest, Rand E will of course not directly 
be available, but rather occur as the result from combining smaller pieces 
of knowledge Rj, j = 1, ... , r, that refer to quantitative dependencies 
between the possible values of subsets Aj S;;; A of attributes, where Aj 
reflects an existing qualitative dependency with respect to the attributes 
contained in Aj. 

To support a nice handling of Rj we choose the following formal envi­
ronment: 

Let A' S;;; A be a set of selected attributes and 

I(A') ~ {iE{l, ... ,n}la;EA'} 

its identifying index set. As abbreviation we introduce the special index 
set N = {I, ... , n}. 

An arbitrary set rot = {II, ... , Ir } of index sets is called a modularization 
of N, iff 
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(a) ('VI E rot) (0 i= I ~ N), 
(b) U I={I, ... ,n}, 

Ie rot 

(c) ('VI, I' E rot) (I i= I' implies I C£:. I'). 

173 

If rot = {I(Aj) I j = 1, ... , r} is a modularization of N, it can be used to 
define the qualitative dependencies among all attributes of A, which are 
especially clarified in terms of the induced hypergraphs (A, {Al , ... , Ar}) 
and (N, rot), respectively. In order to get a pleasant representation of 
Rj, j = 1, ... , r, we apply the concept of the general cartesian product: 

Let I ~ N be a non-empty index set and (ni)iEI its attached set system 
of domains. Then, 

is the product space of (ni)iEI. Hence, n ~ n N denotes the product 
space of our universe of discourse il = (ndiEN. 

The mentioned quantitative dependencies can now be formalized by a 
rule system R.(il, rot) = {RI I I E rot}, RI ~ nI , such that 
R · - RI(Aj) J' - 1 r J - ,- , ••• , • 

In a corresponding way the evidential knowledge may be specified with 
the aid of an evidential system £(il, 91) = {EJ I J E 91}, where 91 is a 
partition of (non-empty subsets of) N, expected to be compatible with 
rot, which means that for all J E 91 there exists an I E rot such that 
o i= J ~ I. If, for example, only single attribute values, but no relations 
between attribute values are to be observed, then 91 = {{I}, ... , {n}} 
is the right choice and always compatible with rot. Note that compati­
bility ensures that the specific qualitative dependencies in the evidential 
knowledge coincide with the stated general qualitative dependencies (re­
flected by the chosen modularization rot). 
In order to determine R from R.(il, rot) and E from £(il, 91), respectively, 
and furthermore, to calculate the resulting restrictions for the wo(iL 
values, induced by the assumption that imprecise general and evidential 
knowledge is correct w.r.t. Wo (which means that Wo ERn E), we need 
three elementary set-theoretical operations on product spaces, which are 
cylindrical extension, intersection, and projection. 

Let the two non-empty index sets I, J ~ N fulfil I ~ J. Additionally, 
let p(nI) and p(nJ) be the power sets of nI and n J, respectively. 
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Of : P(oJ) _ P(oJ), 

fit( ~) !3! {¢ E oj I (3<p E ~) (Vi E 1) (¢( i) = <pU» } 

denotes the cylindrical extension of oJ onto OJ. 

Of : P(OJ) _ P(OJ), 

Of(W) !3! {<p E oJ I (3¢ E W) (Vi E 1) (¢(i) = <p(i»)} 

is the projection of oj onto OJ. 

Using this formalism, we are now in the position to define the exact 
interpretation of our rule system R.(U,!m) and the evidential system 
£(U, 1)1) in the way that 

A 

R ill n or (RJ) is our induced general knowledge base 
Jetm 

A 

and E ill n Of (EJ) our induced total evidence w. r. t. Wo . 
JEIJi 

Note that these definitions consider both, the underlying qualitative de­
pendency structure (in terms of the modularization rot and the com­
patible partition 91), and the quantitative knowledge, given by the rule 
system R.(U, rot) and the evidential system £(U, 91). 

Regarding the realization of a knowledge propagation mechanism, we 
want to call X = (U, rot, 91, R.(U, rot» a focusing system, and 

u(X, £(U, 1)1» !3! R n E 

the current state of X. 
The name "focusing system" is due to the fact that we focus our general 
knowledge R(U, rot) in the light of the available evidential knowledge 
£(U,I)1). The resulting projections w.r.t. single attributes are 

1I"(i) !3! Of;l(u(X,£(U,91))), i= 1, ... ,n. 

Note that wo(i) E 1I"(i) are the most specific restrictions we can get for 
the attribute values of the object state Wo = (wo(l), ... , wo(n»), assuming 
that our whole available knowledge on wo, represented by R(U, rot) and 
£(U,91), is correct w.r.t. woo Furthermore note that the projections 
1I"(i) , i = 1, ... , n, are of course less informative than u(X, £(U, 91)), since 
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n A .n flf;} 1["(;) 2 R n E, where the equality in general does not hold . 
• =1 

Efficient local propagation techniques that take advantage from the qual­
itative dependency structure (i.e. the semantics of the modularization 
rot), are, for example, presented in [Kruse et al., 1994]. 
General knowledge is often described in terms of imprecise inference 
rules of the form 

Ri: if e j in Xi then eBj in Yj , 
where e denotes a variable taking its values on P(O), and 0 =I Ai ~ N, 
o =I Bi ~ N, Ai n Bj = 0, 0 =I Xj ~ OAj, 0 =I }j ~ OBj is supposed to 
be fulfilled. 
For 0 =I A ~ N, the value e denotes the OA-projection of e. 
Rj is interpreted in the way that 

e j E Xi implies eBj E }j, and e j E OAj \Xj implies eBj E OBj, 

which induces the representing relation 
A A A 

Ri = (fl1(Xi) n fl~(}j)) u fl1(OAj\Xi) 
J J J 

with respect to the common index set Ii = Ai U Bj. 

The occuring system of index sets Ij induces a modularization rot of N, 
and therefore, incorporating the relations Rj, a rule system R(U, rot). 
Hence, for representing our general knowledge, we get a focusing system 
(U, rot, 91, R(U, rot)), since only evidence on manifestations is expected 
to be available. 
Realizing imprecise reasoning then means to calculate 1["(i) for all i E N 
with respect to a given evidential system £(U, 91). 

3 Possibilistic Reasoning 
So far we have restricted ourselves to consider a formal reasoning environ­
ment that is capable of handling imprecise, but certain knowledge. On 
the other hand this model can of course be generalized to the treatment 
of uncertain information. Among the well-known uncertainty calculi 
for numerical settings such as Bayes theory, Dempster-Shafer theory, 
possibility theory, and fuzzy set theory, a promising and straight for­
ward extension of our approach refers to possibility theory in the sense 
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of Zadeh [Zadeh, 1978], where possibility distributions are introduced 
as the epistemic counterparts of fuzzy sets rather than via the defini­
tion of possibility measures and necessity measures, respectively. For 
this reason we prefer to consider possibility functions 7r : 0 --+ [0, 1], 
where 7r( w), applied to our reasoning process, quantifies the degree of 
possibility with which w E 0 equals the current object state Wo of inter­
est. Note that we talk about possibility functions rather than possibility 
distributions, since in our setting it is more appropriate to reject the 
normalization assumption and to view 7r as the one-point coverage of 
a random set (J, P), , : C --+ 2° [Nguyen, 1978]. C is assumed to 
be a finite set of consideration contexts for wo, ,(c) the specific char­
acterization of Wo in context c E C, saying that Wo E ,(c) is true, if 
c is the true context (which is an event that occurs with probability 
P ({ c}) ). With this semantic background 7r can be defined as 7r == 7rr, 
where 7rr : 0 --+ [0,1]' 7rr(w) !?! p( {c E C I w E ,( c)}) is fulfilled. Re­
garding a detailed discussion of possibility functions in a more general 
view of consideration contexts, including an investigation of reasonable 
operations on possibilistic data, we refer to [Gebhardt and Kruse, 1993b, 
Gebhardt and Kruse, 1993c]. 

Note that 7r(w) is the mass of all contexts c E C that support the possibil­
ity of truth of "w = wo" and therefore serves as a possibility degree. Fur­
thermore note that 7rr can be interpreted as an information-compressed 
representation of r, restricting to pure possibilistic aspects, avoiding the 
explicit treatment of underlying consideration contexts. 

Based on the random set approach, 7rr reflects the occurence of uncer­
tainty (probabilistic background in form of the probability measure P) 
and imprecision (due to the set-valued function,) for the imperfect char­
acterization of woo In the special case of precision (i.e. 1,(c)1 = 1 for all 
c E C), 7rr formally coincides with a probability distribution on 0, but 
7rr(w) should in general not be mixed up with a probability mass, since 
- from a semantic point of view - possibility degrees and probability 
masses are quite different concepts. 

With respect to the realization of possibilistic reasoning it has to be 
pointed out that the whole discussion on focusing systems and eviden­
tial systems presented in the previous section can easily be adopted 
for the possibilistic case in the way that possibilistic rule systems 
R(U,9Jt) = {/ I I E 9Jt} and possibilistic evidential systems £(U, 91) = 
{e J I J E 91} with possibility functions pI : 0 1 --+ [0,1] and eJ : oj --+ 

[0, 1], respectively, are applied. 
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In this connection all operations on relations used for the propagation 
algorithm (which are intersection, cylindrical extension, and projection) 
have to be replaced by their possibilistic counterparts (e.g. the min­
operation for intersection). 
Furthermore it turns out that the mentioned context-related view of 
possibility functions requires to interpret possibilistic inference rules (as 
a generalization of imprecise inference rules discussed in section 2) with 
the aid of the corresponding Godel relation. For a clarification of this 
fact, see, for example, [Gebhardt and Kruse, 1993c]. 

4 Application and Concluding Remarks 

Possibilistic reasoning as introduced in the previous sections, using the 
concept of a possibilistic focusing system (U, 9R, 91, R(U, 9R)), U = 
(Oi)iEN, has been realized in the software tool POSSINFER (Possibilistic 
Inference) [Kruse et al., 1994], which therefore in some sense is analogous 
to its probabilistic counterparts HUGIN [Jensen et al., 1990, Andersen 
et al., 1989] and BAlES [Cowell, 1992]. 
These tools are implementations of one of the most important algo­
rithms for probabilistic inference [Lauritzen and Spiegelhalter, 1988, 
Pearl, 1988] and its recent improvements [Lauritzen, 1991, Lauritzen, 
1992, Spiegelhalter et al., 1992]. Among other tools that reflect similar 
approaches for non-Bayesian uncertain reasoning in numerical frame­
works, especially PULCINELLA [Saffiotti and Umkehrer, 1991] should 
be mentioned, which is related to Shenoy's valuation-based systems 
[Shenoy, 1989, Shenoy and Shafer, 1990], proposing propagation algo­
rithms in terms of valuations that can be particularized to probabilities, 
beliefs, and boolean expressions, respectively. Selected work that has 
been done in this field concerns the propagation of upper and lower 
probabilities in directed acyclic networks [Cano et al., 1991], and corre­
sponding considerations for the belief function setting [Wilson, 1991). 
Although propagation in the pure probabilistic environment surely is 
the most advanced among the numerical approaches (also see, for exam­
ple, the PATHFINDER project [Heckermann et al., 1992]), it should be 
recognized that there are also application domains for alternative frame­
works, whenever the uncertain knowledge to be modelled is rather im­
precise than precise, or, if the specification of prior probabilities and con­
ditional probabilities turns out to be unmotivated or just over-modelled 
in comparison to the imperfect information that is available in order to 
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realize an efficient reasoning process. Note that our concept of a possi­
bilistic focusing system and therefore the resulting softwaretool POSS­
INFER does not explicitly use conditional objects, but only handles the 
dependencies expressed by possibilistic rule systems 'R-(U, rot). 
At first glance such an approach may be criticized as being quite restric­
tive, but in fact there seem to be interesting applications, where this 
setting is appropriate and sufficient for effective imperfect knowledge 
modelling. 
As an example we considered a causal probabilistic network, which is 
a directed acyclic graph, consisting of 22 nodes and 22 vertices, for 
determining the genotype and verifying the parentage of Danish Jer­
sey cattle in the F-blood group system. It is chosen to be a tutorial 
example for HUGIN and its underlying theoretical background [Ras­
mussen, 1992]. Presupposing the qualitative dependency structure (in 
our case the modularization rot of the possibilistic focusing system that 
is intended to be developed), we used an available database of 747 
cases, each of which specifies the (imprecisely) observed values for 10 
of the 22 involved attributes, for finding an appropriate possibilistic rule 
system 'R-(U, rot). More precisely spoken, we defined the random set 
r = (" P)" : C -+ P(O), p({c}) ~ rbr, where C denotes a set of 
uniformly distributed consideration contexts (interpreted as information 
sources for the cases in the database), and ,(c) the specific (imprecise) 
datum attached to context c E C. Furthermore let rI denote the random 
set rI = (,I,P)"I: C -+p(OI), defined by ,I(C) = llf('(c)), I E rot. 
Then, 'R-(U, rot) = {7rrI I I E rot} is the possibilistic rule system induced 
by the random set r and the stated modularization rot. 
Related to this example, it turns out that the quality of decisions, deliv­
ered by propagation with the aid of the resulting possibilistic focusing 
system, is similar to that of HUGIN. 
Regarding the theoretical background of decision making with possibility 
functions in the context approach [Gebhardt and Kruse, 1993b], we refer 
to [Gebhardt and Kruse, 1993c]. Nevertheless a lot of work has still to be 
done for a well-founded comparative discussion of the two frameworks. 

Furthermore we have to investigate algorithms for the appropriate choice 
of modularizations rot. Corresponding algorithms for the creation of 
Bayesian belief network structures from data are either based on con­
ditional independence tests (e.g. [Verma and Pearl, 1992]) or take a 
Bayesian learning method (e.g. [Cooper and Herskovits, 1992, Lauritzen 
et al., 1993]). 
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[Singh and Valtorta, 1993] presents an algorithm that integrates these 
two concepts in order to reduce time complexity. In our future consid­
erations it has to be pointed out, in which way such learning algorithms 
may be modified and adopted for possibilistic focusing systems. 
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4.3. Hybrid Reasoning with FUZZYNEX 
Sascha Dierkes, Bernd Reusch, and Karl-Heinz Temme 

Abstract 

FUZZYNEX is an extension of Nexpert Object to make fuzzy 
inference available. The knowledge is completely represented 
within Nexpert Object, no access on external files is done dur­
ing inference. FUZZYNEX allows the construction of hybrid 
knowledge-based systems by combination of fuzzy and crisp rea­
soning. 

1 Motivation 

The idea for FUZZYNEX origins from a project group 1 at the chair 
Informatik 1, University of Dortmund, which worked on the optimization 
of parameters for resistance welding. [2][3]. 

This optimization was performed by an fuzzy expert system, which 
supported the user during parameter selection but did not directly con­
trol the machine. Based on this problem definition the following con­
straints for the fuzzy expert system were concluded: 

1. representation of fuzzy expert knowledge, 

2. data base interfaces to various parameter data bases, 

3. representation of crisp knowledge at extreme values, 

4. dynamical weights for the knowledge, 

5. executable under MS-Windows 

6. easy and understandable user manual. 

As there was no shell with this desired functionality, we looked for 
a shell with at least a subset of functions and which was established 
at the market. Our choice was NEXPERT OBJECT (NO) [10][11][12] 
under MS-Windows 3.1 together with Toolbook 1.5 by Asymetrix. This 

1 Project groups are mandatory practica for senior students (in groups of 12) for 
one year at the department Informatik, University of Dortmund. The work of a 
project group is practical oriented and covers all typical tasks of a software project 
like brainstorming, conception, implementation, test, documentation etc. 
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combination satisfied all requests except the fuzzy component for the 
system. But due to the C-interface of NO a fuzzy component could be 
integrated. 
The project group was successfully finished in March 1993. The idea 
of FUZZYNEX has been developed further outside university and has 
changed from a prototype to a product. The status of the system de­
scribed in this article is of July 1993. 

2 Concepts 

2.1 General ideas 

The important basic idea during the development of the system was 
the uniform representation of crisp and fuzzy knowledge from the begin­
ning on. The knowledge should be represented completely within NO, 
so NO had to be enhanced be a fuzzy inference machine, which inter­
prets and evaluates rules in NO notation as fuzzy rules. The base for 
the fuzzy inference is the common" Fuzzy Logic Control" (FLC) whereby 
the user can choose between "correlation product inference" or "corre­
lation minimum inference" [6] [8]. For the defuzzification process the 
center-of-gravity method is used with the modification, that overlapping 
areas could be either regarded as one single area or each influence the 
calculation. 

2.2 Hypothesis-based inference 

In addition to the FLC-inference another concept, which is a real ex­
tension, is implemented. This concept focusses on inferences which are 
based on hypothesises (in short: hypos). The inference machine receives 
hypos and tries to validate them by rules, in case of crisp logic these 
hypos can be either true or false, but in FUZZYNEX the membership 
value (Jlllw (Hypothese)) of a hypo in respect to the set of valid hypos 
(Hw) is being calculated. The crisp logic is here a special case, if the 
hypo is true, its membership value in respect to the set of valid hypos 
is 1, otherwise 0 (false hypo). The membership value of a hypo to Hwis 
determined by an OR-operation of the membership values of the rules 
in respect to the set of valid rules (Rw, or JlRw (rule)). The member­
ship value of a rule to Rwis then determined by an AND-Operation of 
the membership values of the rule's premises in respect to the set of 
valid premises (Pw , or WPw (premise)) multiplied by the factor for the 
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certainty of the rule (Certainty factor). The algorithm looks like: 

J-L1f. .. (hypothesis H) = J-Ln .. (rule 1 (H))V / ... V /J-Ln .. (rule n (H)) (1) 

J-Ln .. (rule R) (J-LP .. (premisel(R))A/ ... J-Lp w (premisen(R))) 

*certaintyfactor(R) (2) 

The membership factor of a premise to the set of valid premises is cal­
culated depending on the premise. In the trivial case it is a membership 
value of a fuzzy set: 
Is age "young". 
In this example the membership value of the variable age in respect 
to the fuzzy set young is calculated, which is then the value for 
J-LP .. (Is age "young"). The second non-trivial case for premises is the 
backward chaining of hypos, for example 
Yes age-is-young. 
In this case is J-LP .. (Yes age-is-young) = WH .. (age - is - young). 
This value is calculated by rules as mentioned above. 

In parallel rules may contain crisp premises, these premises are used 
to decide whether a rule should be processed further or not. 
The ability to combine crisp and fuzzy premises and to connect rules by 
hypos is a good opportunity to construct structured fuzzy rule networks. 
So at start it could be determined by a crisp premise, whether a rule 
should be fired or not, then a particular rule set could be processed via 
the hypo connection. 
A second alternative is to control rules by the dynamical certainty factor 
of each rule. If it is set to 0, the conclusion of the rule is not evaluated. 

2.3 Connection of crisp and fuzzy inference 

Within the system the fuzzy inference is totally seperated from the crisp 
inference of NO. The fuzzy inference is called by an execute-handler, to 
which those hypos are passed, which should be fuzzy evaluated. This of­
fers the opportunity to select dedicated rule classes for inference. Hypos 
can be bound dynamically on a class which is then transferred to the 
execute-handeler to be evaluated. 
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3 Functionality 

3.1 Standard FLC inference 

At first FUZZYNEX offers the common functionality which is used in 
many fuzzy controllers. But the system is not designed to program fuzzy 
controllers but for applications in the field of information and advising 
systems. It is bound for knowledge engineers of expert systems, who 
intend to solve their problems with the aid of as well crisp as fuzzy 
knowledge. NO has been established as the leading tool on market for 
processing crisp knowledge, now FUZZYNEX offers the opportunity to 
handle fuzzy knowledge under NO, too. 

In advising systems which should reflect expert knowledge it is fre­
quently necessary to model complex decision processes {1]. To support 
this modelling FUZZYNEX offers hypo-based inference to structure the 
knowledge. This can be useful even for rule networks with only one 
stage. For example during the project group already mentioned above 
an one-stage rule base with about 170 fuzzy rules was implemented. Due 
to the flat structure correction and test of the rules was difficult. After 
a redesign and reimplementation as a multi-stage knowledge base these 
points were much easier to perform. 

3.2 Fuzzy editor 

To work correctly certain requirements were made for the inference. 
These interface definitions are uncomfortable for the user, so a graphical 
surface under MS-Windows 3.1 with Toolbook 5.1 was developed for the 
creation of fuzzy data bases. This surface is designed not to allow the 
user to give wrong input, another feature is the graphical display and 
editing of fuzzy sets. 

3.3 Combination of crisp and fuzzy reasoning 

FUZZYNEX offers the opportunity to connect crisp and fuzzy knowl­
edge. The first or "top" rule always has to be a crisp one in NO, from 
which the fuzzy inference process can be started. To design a hybrid 
knowledge base and to use both types of knowledge, several alternatives 
can be used. The crisp inference can influence the fuzzy one as follows: 



Hybrid Reasoning with FUZZYNEX 187 

from to 
CriSp CriSp 
CriSp fuzzy 

fuzzy 
fuzzy 

CriSp 
fuzzy 

methods 
standard inference of NO 

• determination by crisp rules whether a 
fuzzy inference should be started or not, 

• detemination by hypos, which rule 
branches should be started, 

• dynamical assignment of certainty fac­
tors. 

not possible 
connection of rules by hypos (in combination 
with meta-premises: selection of fuzzy rules 
during inference) 

Table 1: Overview combinations of inference strategies 

• depending on rules the fuzzy inference can be started, 

• class structures can be used to determine which hypos should be 
evaluated 2, 

• out of a slot the confidence factor of a rule can be set. 

Besides the control of the fuzzy inference by the crisp inference the op­
portunity of hybrid rules exists, which combine crisp and fuzzy premises. 
The crisp premises then play the role of meta-premises. These meta­
premises decide whether a rule is passed to the fuzzy inference or not. 
When a crisp premise occurs within a hybrid rule, the evaluation is in­
terrupted. If the premise is false, the evaluation is aborted and the rule 
does not contribute to the calculation of jl1iw 0 of the appropriate hypo. 
By using these meta-premises it is very easy to activate or deactivate 
particular rule branches according to certain crisp facts. For this it is 
necessary that those facts are already known, there is no dynamical de­
termination of the value of a fact. This would be a connection from the 
fuzzy to the crisp inference and is not yet designed in the system. 
1 

2caused by so called "dynamic links" 
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4 Implementation 

FUZZYNEX is an extension of NO which is implemented in ANSI-C 
using the" Application Programming Interface" (API) of NO. It consists 
of one program for the inference and one program for the defuzzification. 
Both programs are directly incorporated in NO and do not access any 
external information. All rules, objects and fuzzy sets are completely 
represented within NO and can be edited by the build-in surface of NO. 
They have to obey certain syntactic and semantic restrictions, e.g. for 
the inference a particular class-object-structure must exist to represent 
the fuzzy variables and fuzzy sets. 

4.1 Fuzzy frames in NO 

The representation of variables for the fuzzy inference is implemented 
as objects in NO, which belong to the class Fuzzy_Objects and have the 
following slots: 

1. x_Minimum resp. x_Maxiumum, these slots hold the range for 
which the variable is defined 3, 

2. Unit, unit for the x-range, 

3. Comment, slot for explanation text, 

4. FuzzyAttributes, list of attributes which are defined for this vari­
able, 

5. FuzzyObjecLSource, reference for the crisp value to work with dur-
ing inference, 

6. Area, size of area which was calculated during defuzzification, 

7. center of gravity, x-coordinate of the cog, 

Fuzzy sets are represented as objects in NO, too. The sets are defined 
by a finite number of values, between these samples the functions are 
linear. For this the objects have two slots to store the coordinates of the 
samples as lists. A third slot is reserved for comments. 
Another class of objects is provided for the fuzzy hypos. In one (boolean) 
slot it is marked whether the hypo has been already processed, a second 
slot takes the membership value of the hypo in respect to the set of all 
valid hypos after the hypo has been processed. 

3 range of universe 
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4.2 Incorporation into NO 

NO offers an interface via API through which all functions of NO can be 
activated and all information of a data base can be read or written. The 
programs for inference and defuzzification access via this interface the 
data base for the fuzzy rules. Within NO the programs are called by an 
'execute' statement which is placed in a slot or metaslot. A limited set 
of operaters in NO is offered for use by rules, concerning the inference 
these are: 

IS calculates the membership value, syntax is: 
IS FuzzyObject attribute 

an example: 
IS FuzzyObjecLperson "young" 

ISNOT is equivalent to Fuzzy-Not(IS) 

YES calculates the membership value of a hypo to the set of all valid 
hypos and starts a backward-chained inference, syntax is: 
YES FuzzyHypo 

for example: 
YES FuzzyHypo_AgeIs Young 

NO is equivalent to Fuzzy-Not( YES). 

4.3 Inference 

The Inference is called by: 
Execute "eva/" Parameter 
The first parameter is a list of hypos which should be evaluated. Further 
parameters can be adjusted: 

• Operator for the combination of premises, e.g. Minimun, Gamma­
Operator or Yager-family, 

• Operator for the inference (Minimum or Product), 

• Operator for the combination of rules, e.g. Maxiumum, Gamma­
Operator or drastic sum, 

• Operator for NOT, 
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• control comments, put into Transcript. 

During the inference new fuzzy sets are generated as dynamical objects 
due to the evaluation of the rules, and the Jl1i .. 0 of the hypos are 
determined. 

4.4 Defuzzification 

In the defuzzification process the dynamically generated fuzzy sets are 
processed by the center-of-gravity method. A modification is available, 
all sets can first be joint by maximum, or each area counts for its own. 
The defuzzification routine is called by: 
Execute "defuzzify" Parameter 
with a list of variables to be defuzzified and the mode of the defuzzifica­
tion method. 

4.5 Hardware platform 

FUZZYNEX is available for MS-Windows 3.1 and for VAX/VMS. For 
the MS-Windows 3.1 version a Fuzzy Editor is offered too, which sup­
ports the creation of a fuzzy knowledge base. 

4.6 Perspectives 

FUZZYNEX has been developed as an aid to create hybrid knowledge 
bases. Further developments will concentrate on structuring those bases. 
Chaining rules is one more field of investigation 4 as well as non standard 
inference methods [4][5][9]. 
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4.4. The Semantics of Imprecision 
in Terminological Logics 

Jochen Heinsohn 

Abstract 

This paper presents the language .AIrP which is a probabilis­
tic extension of terminological logics and aims at closing the gap 
between terminological knowledge representation and uncertainty 
handling. We present the formal semantics underlying the lan­
guage .AIrP and introduce the probabilistic formalism that is 
based on classes of probabilities and is realized by means of prob­
abilistic constraints. Besides infering implicitly existent proba­
bilistic relationships, the constraints guarantee terminological and 
probabilistic consistency. Altogether, the new language .AIrP ap­
plies to domains where both term descriptions and uncertainty 
have to be handled. 

1 Introduction 

193 

Research in knowledge representation led to the development of termi­
nological logics [Nebel, 1990] which originated mainly in Brachman's 
KL-ONE [Brachman and Schmolze, 1985] and are called description log­
ics [Patil et al., 1992] since 1991. In such languages the terminological 
formalism (TBox) is used to represent a hierarchy of terms (concepts) 
that are partially ordered by a subsumption relation: concept B is sub­
sumed by concept A, if, and only if, the set of B's real world objects is 
necessarily a subset of A's world objects. In this sense, the semantics of 
such languages can be based on set theory. Two-place relations (roles) 
are used to describe concepts. In the case of defined concepts, restrictions 
on roles represent both necessary and sufficient conditions. For primitive 
concepts, only necessary conditions are specified. The algorithm called 
classifier inserts new generic concepts at the most specific place in the 
terminological hierarchy according to the subsumption relation. Work 
on terminological languages led further to hybrid representation systems. 

This work was supported by the German Ministry for Research and Technology 
(BMFT) under contract ITW 8901 8 as part of the WIP project. I would like to 
thank Bernhard Nebel for valuable comments on earlier versions of this paper. 
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Systems like BACK, CLASSIC, LOOM, KANDOR, KL-TWO, KRIS, KRYPTON, 

LILOG, MESON, SB-ONE, and YAK (for overview and analyses see [Sigart 
Bulletin, 1991, Heinsohn et al., 1994]) make use of a separation of ter­
minological and assertional knowledge. 

Since, on one hand, the idea of terminological representation is essen­
tially based on the possibility of defining concepts (or at least specifying 
necessary conditions), the classifier can be employed to draw correct 
inferences. On the other hand, characterizing domain concepts only 
categorically can lead to problems, especially in domains where certain 
important properties cannot be used as part of a concept definition. This 
may happen especially in real world applications where, besides their de­
scription, terms can only be characterized as having additional typical 
properties or properties that are, e.g., usually true. In the real world 
such properties often are only tendencies. Until now, imprecision of this 
kind has not been considered in the framework of terminological logics. 

While, as argued above, classical terminological knowledge represen­
tation excludes the possibility to handle uncertain concept descriptions, 
purely numerical approaches for handling uncertainty [Kruse et al., 1991] 
in general are unable to consider terminological knowledge. The basic 
idea underlying the formalism presented in this paper is to generalize 
terminological logics by using probabilistic semantics and in this way to 
close the gap between the two mentioned areas of research. 

This paper presents the semantics of the language .A/:CP [Heinsohn, 
1993] and pursues our earlier investigations [Heinsohn, 1991]. First, we 
briefly introduce ACe [Schmidt-SchauB and Smolka, 1991], a proposition­
ally complete terminological language containing the logical connectives 
conjunction, disjunction and negation, as well as role quantification. In 
Section 3 we extend ACe by defining syntax and semantics of proba­
bilistic conditioning (p-conditioning), a construct aimed at considering 
uncertain knowledge sources and based on a statistical interpretation. 
In Section 4 we introduce the formal model underlying both the ter­
minological and the probabilistic formalism. We further characterize 
the classes of probabilities induced by terminology and p-conditionings. 
As demonstrated in Section 5, a set of consistency requirements have 
to be met on the basis of terminological and probabilistic knowledge. 
Moreover, the developed interval-valued probabilistic constraints allow 
the inference of implicitly existent probabilistic relationships and their 
quantitative computation. The conclusions are given in Section 6. While 
this paper mainly focuses on terminological and probabilistic aspects, the 
consideration of individuals means the ability to draw inferences about 
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"probabilistic memberships". The complete model based on probabili­
ties over both domains and worlds is described in [Heinsohn, 1993l. 

2 The Terminological Formalism 

The basic elements of the terminological language .ACe [Schmidt-SchauB 
and Smolka, 1991] are concepts and roles (denoting subsets of the domain 
of interest and binary relations over this domain, respectively). Assume 
that T ("top", denoting the entire domain) and ..l ("bottom", denoting 
the empty set) are concept symbols, that A denotes a concept symbol, 
and R denotes a role. Then the concepts (denoted by letters C and D) 
of the language .ACe are built according to the abstract syntax rule 

C, D -+ A I T I ..l I C n D I CuD I -,C I V R: C I 3R: C 

where n, u, and..., denote concept conjunction, disjunction, and nega­
tion, and V and 3 denote value and existential restriction, respectively. 

With an introduction to formal semantics of .ACe in mind, we give 
a translation into set theoretical expressions with 1) being the domain 
of discourse. For that purpose, we define a mapping £ that maps every 
concept description to a subset of V and every role to a subset of V x V 
in the following way: 

£[T] 
£[(Cn D)] 

£[(VR: C)] 

£[(3R:C)] 

V, £[..l] = 0, £[(...,Cn = V \ £[C], 
£[C] n £[D], £[(Cu DH = £[C] U £[D], 

{x E VI for all y E V: «x, y) E £[R] => y E £[C])}, 

{x E VI exists y E V: «x, y) E £[R] /\ Y E £[C])}. 

Concept descriptions are used to state necessary, or necessary and suffi­
cient conditions by means of specializations "~" or definitions" == " , re­
spectively. Assuming symbol A and concept description C, then "A ~ C" 
means the inequality £[A] ~ £[C], and "A == C" means the equation 
£[A] = £[Cl A set of well formed concept definitions and specializa­
tions forms a terminology, if every concept symbol appears at most once 
on the left hand side and there are no terminological cycles. 

Definition 1 Let T be a terminology. The set 

mod(T) ~f {£I£ extension function of T} (1) 

is called set of models of T. 
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A concept CI is said to be subsumed by a concept C2 in a terminology 
T, written CI -:iT C2, iff the inequality £[CI ] ~ £[C2] holds for all 
extension functions satisfying the equations introduced in T (i.e., for all 
£ E mod(T)). 

Terminological languages as ACe can be usefully applied to categorical 
world knowledge. For instance, we may introduce 

Example 1 animal C T 
flying C T 

antarctic_animal C animal 
bird ..:. animaln (Vmoves_by : flying) 

antarcticbird ..:. antarctic_animaln bird 
penguin C antarcticbird 

However, imprecise information cannot be expressed and used in classical 
terminological logics. The importance of having appropriate language 
constructs becomes obvious, if we examine the above birds' taxonomy in 
more detail: Because of terminological subsumption, the flying property 
of birds is inherited also to the penguin concept. However, it is well 
known that concerning this aspect penguins represent a real exception, 
so that the (categorical) definition of birds seems also to be inadequate: 
At best "most birds move by flying" or are flying objects that are defined 
to move by flying. It seems to be more suitable to generally consider the 
"degree of intersection" between the respective concept's extensions and 
to characterize it using an appropriate technique. The idea behind this 
generalization is to use probabilistic semantics. 

3 Probabilistic Conditioning 

In the following we consider only one representative for equivalent con­
cept expressions (such as A, AnT, A n A). The algebra based on rep­
resentatives of equivalence classes and on the logical connectives n, U, 
and.., is known as Lindenbaum algebra of the set S of concept symbols. 
We use the symbol C for the set of concept descriptions. Domain V is as­
sumed to be finite. As a language construct that takes into account over­
lapping concept extensions, we introduce the notion of p-conditioning: 

the language construct CI [P~ul C2 is called p-conditioning, iff [PI, Pu] is 
a subrange of real numbers with 0 ~ PI ~ Pu ~ 1 and CI , C2 E C. The 
semantic is defined as follows: 
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Definition 2 An extension function £ over C satisfies a p-conditioning 

CI [P~,,) C2 , written FE CI [p~,.) C2 , iff I£[CI n C2] 1I1£[CI ]I E [PI, Pu] 
holds for concepts CI , C2 E C, £[Cl ] ::f 0. 

From the above it is obvious that we use the relative cardinality for 
interpreting the notion of p-conditioning. For illustrating the meaning 
of Definition 2, assume that an observer examines the flying ability of 
birds in more detail. When finishing his study he may have learned that, 
different from the model of Example 1, relation moves_by:flying holds 
only for a certain percentage of the birds. The notion of p-conditioning 
now allows a representation of universal knowledge of statistical kind 
in a way that maintains the semantics of the roles: the new concept 
flying_object is created with role moves_by restricted to range flying. The 
uncertainty is represented by a p-conditioning stating that "at least 95% 
of birds are flying_objects that, by definition, all move by flying". The 
now more detailed view to the example world leads to the following 
revision of Example 1: 

Example 2 animal!;;; T, flying!;;; T, flying_object:::: Vmoves_by : flying, 
antarctic_animal!;;; animal, bird!;;; animal, antarcticbird:::: 

. . lb· d . .-- . b· db· d[o.95,l)fl· b· antarctzc_anzma n zr, pen gum '= antarctzc_ zr, zr -+ yzng_o 1ect, 
b· d[o.2o,o.20) . b· d . [O,O)fl· b· zr -+ antarctIc zr , pengum -+ yzng_o 1ect. 

This demonstrates that set theory is sufficient for a consistent semantic 
basis on which both terminological and probabilistic language constructs 
can be interpreted. On this basis, the p-conditioning serves also as a 
generalization of both "inclusion" and "disjointness" (now appearing as 

A.!.. B and A ~ B, respectively). Example 2 shows not only an ade­
quate representation of the fact that "most (i.e., ;::: 95%) birds are flying 
objects" but also that "20% of the birds are antarctic birds" and "no pen­
guin is a flying object". This directly leads to the question in which way 
inferences can be drawn on the basis of terminological and probabilistic 
knowledge to infer implicitly existent relationships. In fact, Example 2 
implicitly covers the knowledge, that "at least 75% of antarctic birds 
are flying objects" and that "at most 5% of birds are penguins" , for in­
stance. For this, we first introduce the formal model based on classes of 
probabilities and then derive the associated probabilistic constraints. 
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4 The Formal Model 

In concrete application domains, knowledge about uncertain concept re­
lations generally exists only for some pairs of concepts of a terminology­
neither directly representable statistical knowledge nor textbook knowl­
edge is complete in this sense. Consequently, the question arises in which 
way, starting with a set of models restricted wrt. terminology and p­
conditionings, one can infer (uncertain) relationships between those pairs 
of concepts for which p-conditionings are not explicitly introduced. Be­
low we give an answer to this question by defining the sets of entailed 
and minimal p-conditionings. The first part of the definition considers 
the fact that the set of models of a terminology (see equation (1)) is 
generally refined if p-conditionings are introduced. 

Definition 3 Let T be a terminology and I be a set of p-conditionings. 

modT(I) ~f {£ I t=c I} n mod(T) (2) 

is called the set of models of I wrt. T. 

(3) 

is called the set of entailed p-conditionings wrt. I and T. 

minT(I) ~ U {cR~n D I Rmin = n R} (4) 
C,DEC R : C.!DEThT(I) 

is called the set of minimal p-conditionings wrt. I and T. 

These definitions-especially the set defined in (4 )-describe a formal 
model that characterizes the computation of p-conditionings introduced 
not explicitly and the further refinement of p-conditionings that are 
known. Note that both sets (3) and (4) contain p-conditionings for 
all pairs of concepts. While (3) generally is of infinite size, (4) con­
tains exactly one p-conditioning for one pair of concepts. A set I of 
p-conditionings is called consistent wrt. T, iff modT(I) t 0 holds. 

Definition 4 A concept CI is said to be subsumed by a concept C2 wrt. 
T and I, written CI ~T,I C 2 , iff the inequality £[CI ] ~ £[C2] holds for 
all extension functions £ E modT(I). 
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It can be shown that all minimal sets Rmin of real numbers defined in 
(4) form ranges as it is the case for explicitly introduced p-conditionings. 
This is due to the convexity property of those probability classes that 
are induced by terminological axioms and p-conditionings over the set 
of atomic concept expressions. In the following we focus on this aspect. 

In addition to the symbol C for the set of concept descriptions we 
use CA for the set of atomic concept expressions (i.e., the atoms of 
the Lindenbaum algebra). Atomic concept expressions are of the form 
BI n B2 n ... n Bm , where B; is either a concept symbol A or the nega­
tion ...,A of a symbol. The relation CA ~ C holds. A first simple ob­
servation is that for every extension function & E modr(I) the set of 
extensions of the elements in CA forms a partition of V. A direct con­
sequence of this observation is that every extension function f. uniquely 
determines a probability over CA. 

Proposition 1 Let T be a terminology and I be a consistent set of p­
conditionings. Further, let f. E modr(I) be an extension function/or 
which 

(5) 

holds. Then the real-valued set function Pc defined by 

is a probability function over CA. 

Note that every concept can be represented as a disjunction of atomic 
concept expressions, i.e., for every concept expression C E C there exists 
a subset D ~ CA of atoms such that C = U D. In this way Pc can be 
extended to concept expressions. 

Proposition 1 shows that, assuming complete knowledge of domain 
V and of the involved cardinalities, a probability function Pc over CA 

is induced by the extension function &. However, it is generally more 
realistic to assume less complete knowledge and cardinalities that are 
rather relative. Consequently, the set modr(I) generally contains more 
than one element, so that a class of probabilities is induced by T and I. 
The most general set of all probabilities over CA is defined by 

M ~f {(PI, ... , Pn) E ~n I PI + ... + Pn = 1, Pi ~ 0 for all 1 ~ i ~ n}, 
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with n = 2m . Without any knowledge about p-conditionings and termi­
nology the set M characterizes the status of complete ignorance. On the 
other hand, for a particular extension function [ the set M consists of 
exactly one point in the n-dimensional space [0, l]n. In case of given T 
and I, by (2) a set modr{I) of extension functions and also a set 

MT,I 
def 

{(Pl, ... ,Pn) E M I 
exists [ E modT(I) : Pj = Pc{ {ej-}), j = 1, ... , n} 

of probabilities are defined. Mr,I corresponds to the set of probabilities 
in M that are compatible with T and all p-conditionings in I. It can 
be shown that for every consistent T and I Mr,I is it convex set. 

5 Probabilistic Constraints 

In the following, we focus on probabilistic constraints which correspond 
to the formal model introduced above, which are locally defined and 
therefore context-related, and which derive and refine p-conditionings 
and check in this way the consistency of the knowledge base. While in 
this paper we restrict ourselves to simple examples, the complete set of 
constraints is given in [Heinsohn, 1993]. We assume consistent sets T 
and I for the rest of this paper. 

Proposition 2 For all concepts e, DEC \ {1-}: 

D ~r,I e ¢:> (D~e) E minT{I) (7) 

{e(P~·lD,D[q~ule} ~ minT{I) ~ (PI> 0 ¢:> ql > 0) (8) 

These constraints characterize the relations between subsumption and 
p-conditioning ({7)) and focus on the role of disjointness ({8)). In the 
following we concentrate on triangular cases that take into account three 
concept expressions and allow the inference of minimal p-conditionings. 
Note that the following proposition examines primitive concepts. If 
a subsumption relation between concepts is known, the respective p­
conditioning has to have the range [1,1] {compare (7)). 

Proposition 3 Assume concepts A, B, e, and p-conditionings 

I - {A(PI,pule A[ql,qulB B[q:,q~lA e(P:,p~lA '-0 40} 
- --+, --+ , --+ , --+ ,PI - ,ql r . 
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Then BR~nc E minr(I) has the minimal range 

Note that because of assumption p; = 0, ql i- ° we restrict ourselves to a 
special case that however applies to the first situation discussed at the 
end of Section 3. 

While above proposition covers cases, in which only primitive con­
cepts are involved, in the case of logically interrelated concepts prob­
abilistic constraints have to be further strengthened to guarantee the 
minimality of ranges. Assuming A, B, C E C \ {J..} an example is 

The main advantage of examining local triangular cases is that "most" 
of the inconsistencies are discovered early and can be taken into ac­
count in just the current context of the three concepts involved. Further, 
not as yet known p-conditionings can be generated and the associated 
probability ranges can be stepwise refined. In the general case, testing 
probabilistic consistency leads for every p-conditioning to a successive 
computing of the intersections of probability ranges derived on the basis 
of different local examinations. 

Related probabilistic constraints have been independently examined 
in [Thone et al., 1992] and [Dubois et al., 1992]. Note that the termino­
logical formalism of .A£CP allows for subsumption computation and for 
correctly handling logically interrelated concepts. As consequence the 
integrated terminological and probabilistic formalism is able to apply 
refined constraints if necessary [Heinsohn, 1991]. 

6 Conclusions 

We have presented the language .A£CP which is a probabilistic extension 
of terminological logics. The knowledge that .At:CP allows us to handle 
includes terminological knowledge covering term descriptions and uncer­
tain knowledge about (not generally true) concept properties. For this 
purpose, the notion of probabilistic conditioning based on a statistical 
interpretation has been introduced. The developed formal framework 
for terminological and probabilistic language constructs has been based 
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on classes of probabilities that offer a modeling of ignorance as one spe­
cial feature. Probabilistic constraints allow the context-related genera­
tion and refinement of p-conditionings and check the consistency of the 
knowledge base. The results of the constraints essentially depend on 
the correctness of the terminology which is guaranteed by the sub sump­
tion algorithm. More details about .A£CP, its formal framework, the 
associated interval-valued constraints, proofs, and related work can be 
found in [Heinsohn, 1993]. There, an assertional formalism for handling 
individuals and associated beliefs is also described. 

References 

[Brachman and Schmolze, 1985] R. J. Brachman and J. G. Schmolze. 
An overview of the KL-ONE knowledge representation system. Cog­
nitive Science, 9(2):171-216, 1985. 

[Dubois et al., 1992] D. Dubois, H. Prade, L. Godo, and R. L. de Man­
taras. A symbolic approach to reasoning with linguistic quantifiers. 
In Proceedings of the 8th Conference on Uncertainty in Artificial In­
telligence, Stanford, Cal., July 1992. 

[Heinsohn et al., 1994] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. 
Profitlich. An empirical analysis of terminological representation sys­
tems. Artificial Intelligence Journal, 1994. Accepted for publication. 
A preliminary version is available as DFKI Research Report RR-92-16. 

[Heinsohn, 1991] J. Heinsohn. A hybrid approach for modeling uncer­
tainty in terminological logics. In R. Kruse and P. Siegel, editors, Sym­
bolic and Quantitative Approaches to Uncertainty, LNCS 548, pages 
198-205. Springer, Berlin, Germany, 1991. 

[Heinsohn, 1993] J. Heinsohn. ALCP - Ein hybrider Ansatz zur Mod­
ellierung von Unsicherheit in terminologischen Logiken. PhD thesis, 
Universitiit des Saarlandes, Saarbriicken, 1993. 

[Kruse et al., 1991] R. Kruse, E. Schwecke, and J. Heinsohn. Uncer­
tainty and Vagueness in Knowledge Based Systems: Numerical Meth­
ods. Series Artificial Intelligence. Springer, Berlin, Germany, 1991. 

[Nebel, 1990] B. Nebel. Reasoning and Revision in Hybrid Representa­
tion Systems. LNAI 422. Springer, Berlin, Germany, 1990. 

[Patil et al., 1992] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, 
D. McKay, T. Finin, T. Gruber, and R. Neches. The DARPA knowl­
edge sharing effort: Progress report. In B. Nebel, W. Swartout, and 



The Semantics of Imprecision in Terminological Logics 203 

C. Rich, editors, Principles of Knowledge Representation and Reason­
ing: Proceedings KR '92, pp. 777-788, Morgan Kaufmann, 1992. 

[Schmidt-SchauB and Smolka, 1991] M. Schmidt-SchauB and G. Smolka. 
Attributive concept descriptions with complements. Artificial Intelli­
gence Journal, 48(1), 1991. 

[Sigart Bulletin, 1991] Special Issue on Implemented Knowledge Repre­
sentation and Reasoning Systems, vol. 2(3). ACM Press, June 1991. 

[Thone et al., 1992] H. Thone, U. Giintzer, and W. KieBling. Towards 
precision of probabilistic bounds propagation. In Proceedings of the 8th 
Conference on Uncertainty in Artificial Intelligence, Stanford, 1992. 



5 

Theory of Fuzzy Systems 



5.1. Theory of Fuzzy Systems: 
An Overview 

Siegfried Gottwald 

Abstract 

As with any simple and fruitful mathematical notion also with 
the notion of fuzzy set a huge amount of theoretical considerations 
is and can be connected. These theoretical considerations concern 
basic, foundational aspects of that notions of fuzzy set as well as 
theoretical problems of specialized fields of applications of fuzzy 
sets and also the use of fuzzy sets instead of the usual, crisp sets 
e.g. in mathematical theories etc. This is, besides all applications 
of fuzzy sets and fuzzy methods, a large field of topics. In any case 
a field too large to be covered in some more specialized conference 
(or book). Hence not the whole area of main theoretical research 
in the fuzzy field can be covered here, and only a few remarks 
shall be devoted to these topics. 

1 Foundational Aspects 

207 

Already from the very beginning the theory of fuzzy sets was seen under 
two different aspects: from the point of view of formal logic - and from 
the point of view of category theory. 

1.1 Fuzzy sets - the logical point of view 

The membership degree /lA(a) to which a point a E X of some universe 
of discourse X belongs to a fuzzy set A is used to graduate membership 
between complete, full, true ... membership, which is represented by 
/lA(a) = 1, and complete, definite, true ... non-membership, which is 
represented by /lA(a) = O. Therefore, the membership degrees can be 
understood as degrees of truth of some statement of the form "a belongs 
to A". To distinguish the graded membership offuzzy sets and the usual, 
crisp membership predicate E, the former graded membership predicate 
often is written c:. Thus "a belongs to A" becomes formalized by the 
formula "a c: A" . 

Now as usually in using formalized languages, one has to be careful 
in distinguishing syntactic and semantic aspects w.r.t. such a formalized 
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language. Fortunately, on the syntactic side, besides the introduction of 
this binary generalized membership predicate c it is not necessary to 
fix too many details of that language. At first it suffices to take lower 
case letters to denote elements of the universe of discourse X, and upper 
case letters for fuzzy subsets of X, i.e. for elements of JF(X). On the 
semantic side one basically needs to have a truth degree connected with 
each well-formed formula of the language. Denoting for any formula H 
this truth degree with [H], of course one has to define basically for all 
a E X and all A E JF(X): 

(1) 

The set of truth degrees, of course, is just the set of membership 
degrees, thus usually the real interval [0,1]. But this means that one 
immediately is in the realm of many-valued logic. 

Therefore now - syntactically as well as semantically - one has to 
decide about the choice of logical operators, on the sentential as well 
as on the quantificational level. Usually there is a standard choice of 
the quantifiers: one has generalization "land existential quantification 
3, and one interprets V via the infimum and 3 via the supremum of the 
respective truth degrees (of the matrix that follows the quantifier string 
"Ix or 3x). Only recently [Thiele 1993] has seriously discussed a wider 
class of quantifiers. 

Postponing the considerations of the sentential connections for a mo­
ment, what one also needs is a flexible notation for fuzzy sets, preferably 
something like the usual class term notation for sets. And indeed, this 
notation is easily generalized. Supposing that a fuzzy set A E JF(X) 
is described by a well-formed formula H(x) of our formalized language 
of fuzzy set theory, i.e. supposing that one has ftA(a) = [H(a)] for all 
a EX, then this fuzzy set A shall also be denoted {x II H (x)}. That 
means to define 

A = {x II H(x)} {::}dej ftA(a) = [H(a)] for all a E X. (2) 

Now one has reached a notational basis which is flexible and useful, and 
which allows to develop large parts of fuzzy set theory in quite strong 
analogy with usual set theory; cf. [Bandemer, Gottwald 1993, Gottwald 
1993]. 
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To give an example, we write down the usual, minimum and maxi­
mum based intersection AnB and union AUB offuzzy sets A, BE JF(X), 
denoting min by /\ and max by V: 

AnB 

AuB 

{xIIXcA/\xcB}, 

{x II x c A V xc B}. 

1.2 Fuzzy logic as the logic for fuzzy sets theory 

(3) 
(4) 

Up to now we did not discuss the sentential connectives to be used in 
the many-valued logic for fuzzy sets. Surely, a conjunction /\ and a 
disjunction V with truth degree functions min, max respectively should 
appear. Additionally, connected with the complement A of A E JF(X), 
defined by: J.!-;:r(a) = 1 - J.!A(a), one considers a negation connective ..., 
with truth degree function 1 - ... , such that one has A = {x 11...,( x c A)}. 

But, contrary to the situation in classical logic, this set /\, V,..., of con­
nectives is not functionally complete; cf. [Gottwald 1989]. Furthermore, 
already in [Zadeh 1965] additional intersections and unions besides (3), 
(4) have been introduced: the (algebraic) product which can be consid­
ered as a variant of (3) based on another conjunction connective with the 
product as its truth degree function, and the (bounded) sum which is a 
variant of (4) based on another disjunction connective with min{l, u+v} 
as its truth degree function. 

Of course, a lot more such versions can be constructed. What one 
is looking for, hence, is some framework for a more general discussion 
of either the set algebra for fuzzy sets or the many-valued sentential 
logic which it is based upon. We here will look at the sentential logic. 
What we thus have to look for are either some uniform ways to introduce 
further sentential connectives besides /\, V,"" or to enrich the complete 
distributive lattice ([0, 1], /\, V) with additional operations. 

Both these possibilities are under discussion and even parallel one 
another to a large extend. Actually, the prefered way to introduce new 
sentential connectives is to start from new types of conjunction connec­
tives &t based on at-norm t; cf. [Gottwald 1993, Gupta, Qi 1991]. A 
t-norm t is a binary operation in [0,1] which is commutative, associative, 
monotonously non decreasing in both arguments, and which has 1 as a 
unit and 0 as a zero element. The class of all t-norms is quite large, 
therefore subclasses or even (one-)parametric families of t-norms have 
been introduced and sometimes are used only. 

With each t-norm t via a de Morgan connection a unique t-conorm 
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St is joined as St(u, v) = 1 - t(l - u, 1 - v). Each such t-conorm St 
is the truth degree function of a disjunction connective Vt, and the 
definition of St forces that [Hl Vt H2] = [-{-.Hl &t H2)] holds true for 
all well-formed formulas H 1 , H 2 of the formalized language of fuzzy set 
theory. Furthermore, with each left continuous t-norm t in a unique way, 
analoguous to the relative pseudo-complementation in lattice theory (cf. 
[Rasiowa 1974]), i.e. analoguous to Heyting algebras, an often so-called 
<I>-operator 'Pt is connected as a residuation by 

'Pt(U, v) = sup{w I t(u, w):S v} (5) 

such that one always has true the characteristic condition 

t(U, w) :s v ¢> w:S 'Pt(u, v). (6) 

These <I>-operators 'Pt in a natural way are truth degree functions of 
implication connectives -t; cf. [Gottwald 1993]. 

By the way it is interesting to recognize that the left continuity of t 
just means that one always has 

[3x(H(x) &t G)] = [3xH(x) &t G] (7) 

for any well-formed formulas H (x), G such that G does not contain the 
variable x free. 

Thus, starting from a given t-norm t, one has always a whole family 
&t, Vt, -t of sentential connectives, usually besides 1\, V. But even 1\, V 
fit into this framework as 1\ = &min, V = V max. And thus one has found 
a sufficiently rich formal language for fuzzy set theory. Without further 
set algebraic details we simply illustrate the expressive power with the 
definition of a graded, t-norm based inclusion relation ~t as 

A ~t B ¢>dej Vx(x c A -t x c B). (8) 

On the present basis then the way is open for deeper investigations into 
fuzzy set theory and its logic; cf. [Gottwald 1993, Takeuti, Titani 1992]. 

1.3 Algebraic structures for truth/membership de-
grees 

Algebraically, the discussions of the preceding section are concerned with 
the structure of the set of truth/membership degrees [0,1]. With 1\ = 
min and V = max this set becomes a complete distributive lattice. An 
algebraic problem now is if this lattice structure here is the right one, 
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or if some other, enriched structure should have preference. Indeed, the 
class JF(X) of all fuzzy subsets of the universe of discourse X with the 
operations n, U is just the direct product fLEX I of card (X) copies of 
the lattice I = ([0,1]' /\, V). And what is known as L-fuzzy sets is just 
the result of an exchange of this lattice I for another lattice L in this 
construction. 

The introduction of t-norms, yet, does not correspond to this idea of 
L-fuzzy sets: ([0,1], t, St) is a lattice only for t = min. This idea of t­
norm introduction instead corresponds to the introduction of an enriched 
structure into the lattice I. The algebraic problem, but, is which type 
of enriched structure is the appropriate one. 

There is general agreement that one of the essential properties of 
all the t-norms t # min is that they are not idempotent, i.e. that for 
t # min there always exist u E [0,1] with t(u, u) < u. Thus, only 
enriching the lattice I with the negation -, and hence studying de Morgan 
algebras is not sufficient. Even the fact that via residuation (5), (6) 
also with /\ = min an implication operator -G, the well known Gadel 
implication of many-valued logic, can be connected - or algebraically: 
that one can go from the lattice I to some H eyting algebra does not really 
solve the problem to enrich the lattice structure by a non-idempotent 
"product". Therefore one algebraically prefers to change from the lattice 
I of truth/membership degrees either to a residuated lattice in the sense 
of [Dilworth, Ward 1938] or to an MV-algebra in the sense of [Chang 
1958]; cf. e.g. [Hahle, Stout 1991, Turunen 1992]. In any case, once again, 
the main point of this enrichment is to have for the logic a canonical 
implication operator and together with the lattice meet a further non­
idempotent, i.e. "interactive" product. 

This non-idempotent additional product, which is related to a non­
idempotent conjunction connective, seems to be highly characteristic for 
logico-algebraic considerations connected with fuzzy sets. And having 
such a non-idempotent product * creates the problem of its invertibility. 
One aspect of this problem is to look for any given element v of the 
algebraic structure for the solvability of the equation u * u = v. Such a 
solution can be seen as a *-root of v. And just this notion of root, the 
problem of the existence of such roots, and consequences of the existence 
of such roots is the tot;ic of the paper of HOHLE which follows in this 
chapter. 
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1.4 Fuzzy sets - the categorical point of view 

The more abstract point of view of category theory adds to the foregoing 
discussions on the structure of the truth/membership degrees, i.e. to the 
set algebraic structure of JF(X) the considerations ofmorphisms between 
fuzzy sets. The objects, of course, of the categories of fuzzy sets to be 
introduced are the fuzzy sets. 

Quite early, within the first decade [Goguen 1974] (with a few remarks 
already in [Goguen 1967]) has given a categorical framework for fuzzy 
sets. But for long this was seen as a more or less esoteric addition to the 
mainstream discussions in the fuzzy field. Work by Manes, e.g. [Arbib, 
Manes 1975, Manes 1982], later offered the idea that graded membership 
together with graded equalitiy should be of basic importance for fuzzy 
sets, and that there should be connections between categories for fuzzy 
sets and toposes. 

This gave an impulse which in recent years much revived the cat­
egorical investigations into fuzzy sets. For the details we refer to the 
literature, e.g. [Hahle, Stout 1991, Stout 1991, Rodabaugh et al. 1992]. 
At present the most interesting outcome of these works seem to be that 
they support the view that a fuzzy set always is strongly tied with a 
graded, i.e. many-valued equality relation in its universe of discourse. 
And this point of view even becomes essential for approaching fuzzy 
control; cf. [Kruse et al. 1993]. 

2 Fuzzy Control and Fuzzy Relation Equa­
tions 

Actually fuzzy control i~ the most prominent applicational area for the 
fuzzy sets idea. Of course, a lot of the problems in fuzzy control are of 
engineering nature and related to each specific application. But there are 
also common features for all the fuzzy control applications, viz. general 
aspects of the fuzzy control methodology. And, moreover, some such 
general aspects are capable of a uniform theoretical treatment. 

The general starting point for the theoretical understanding of fuzzy 
control is that such a control algorithm is presented in the form of a 
finite list of control rules which in the simplest case have the form 

IF a = Ai THEN {3 = B i , i = 1, .. . ,n (9) 

with a the input variable and {3 the output variable of the control al­
gorithm. Here all the Ai, Bi are fuzzy subsets of suitable universes of 
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discourse X, Y, respectively. 
Essentially there are two variants to approach the mathematical re­

alization of such a list (9) of control rules. The pioneering approach of 
[Mamdani, Assilian 1975] used the transformation of (9) into a fuzzy 
relation R and the compositional rule of inference of [Zadeh 1973] to 
connect with each fuzzy input value a = A a fuzzy output value f3 = B 
as 

B = AoR= {yII3x(xcA/\(x,y)cR)}. (10) 

The first industrial application [Holmblad, 0stergaard 1982] to the ce­
ment kiln process connected with each fuzzy input a = A and each 
control rule of (9) a degree of activation 

fiCA) = hgt (Ai n A) = [3x(x c Ai /\ x c A)] (11) 

and reached an output f3 = B by superposition of the rules outputs as 

n n 

B = U fi . Bi = U{y II (y€ Bi) &t 1 fiCA)} (12) 
i=1 i=1 

with the t-norm tl = product. A slight reformulation of (12) gives 

n 

B = U{y 113x(x€ Ai /\ x € A) &t1 y€ Bd· (13) 
i=1 

Thus (13) is not too different of (10). The analogy of both approaches 
becomes even more obvious if one looks at the special choice of the 
fuzzy relation Ro in [Mamdani, Assilian 1975]: Ro = U7=1 (Ai X B;) 
with Ai x Bi = {(x, y) II x € Ai /\ x € Bd. With this specific relation Ro 
formula (10) becomes, cf. [Gottwald 1993]: 

n 

B = U {y 113x( x c Ai /\ x € A) /\ Y € Bd· (14) 
i=1 

The implementation of both these fuzzy control strategies is quite 
straightforward. Hence they give a basis for automatic control devices. 
Even crisp inputs are easy to handle: they are understood as fuzzy 
singletons. But the output usually is a fuzzy set. And then to extract 
from it - e.g. automatically - a final control action to be taken, this 
means that one has to defuzzify this fuzzy output. For this defuzzification 
process one has some proposals how to proceed, but essentially no theory 
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up to now. The following paper of RUNKLER/GLEsNER is an partial 
attempt to reach such a theory. 

The idea to realize a fuzzy controller via (10) by a fuzzy relation can 
also be seen from another point of view. Having (9) realized by R would 
mean to have as a special case of (10) 

Bi = Ai oR, i = 1, .. . ,n. (15) 

Unfortunately, only under additional assumptions concerning the in­
put/output data Ai, Bi equations (15) are satisfied by Mamdani's re­
lation Ro. Usually, the control rules (9) will interact; cf. [Gottwald 
1993]. To avoid this inter activity effect one can turn the problem and 
take (15) as a system of relation equations which has to be solved for 
the unknown fuzzy relation R. This idea transforms the determination 
of a fuzzy relation R out of the control rules (9) into the mathematical 
problem to solve system (15). 

There is a lot of theory concerning solvability and approximate solv­
ability of such fuzzy relation equations and systems of them which shall 
not be reviewed here; cf. e.g. [diNola et al. 1989, Gottwald 1993]. 

But the comparison of the two control strategies mentioned above, 
i.e. of (14) and (13) shows also that the compositional rule of inference 
(10) is not the only way to get a fuzzy output from a fuzzy input and a 
fuzzy (control) relation. Mathematically this means that also other types 
of relation equations besides (15) become of interest. And the following 
paper of GOTTWALD just concerns the extension of the solvability theory 
of fuzzy relation equations to other types of equations. 

Fuzzy control of course competes with traditional control methods. 
Therefore it is of theoretical interest to know about the types of control 
functions which one is able to realize by fuzzy controllers. More recent 
work like [Buckley 1993, Buckley, Hayashi 1993] treats this problem. 
But there is another aspect of the same problem: to try to construct a 
fuzzy controller which realizes a given control function. If one is able to 
do this in a somewhat uniform manner, then a way is opened for some 
type of mathematical comparison of fuzzy and traditional control. The 
following paper of BAUER et al. is concerned with this problem. 
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3 Measuring Fuzziness and Fuzzy Infor­
mation 

Intuitively the most essential type of usage of fuzzy sets is to have them 
available for coding vague as well as imprecise, "qualitative" informa­
tions. This e.g. is the main reason behind fuzzy and linguistic variables, 
and also the main background for the whole area of approximate reason­
ing. 

Of central importance for the treatment of such qualitative informa­
tions are all methods which are concerned with the inference of "new" , 
further informations out of given ones. With these problems one is con­
cerned e.g. in discussions which combine fuzzy set tools with develop­
ments in Artificial Intelligence, in Expert Systems, in Neural Nets etc., 
of course also in fuzzy logic - this last term now taken for systems of 
formalized logic which allow the treatment of fuzzy sets of well-formed 
formulas as sets of axioms or of premisses; cf. e.g. [Kruse et al. 1991, No­
vak 1989]. 

Besides this intuitive notion of (qualitative) information traditional 
information theory has a numerical measure for information (contents). 
Its central numerical notion is that one of entropy. 

For fuzzy sets, on the other hand, one has to look for an additional 
aspect here: it is not only "information content" or "capacity for in­
formation transmittal" one may be interested in, it is also the question 
of "how fuzzy" or "how imprecise" some qualitative information is. It 
was already in [deLuca, Termini 1972] that this problem was taken into 
consideration; cf. also [deLuca, Termini 1979]. Since one has discussed 
such "measures of fuzziness" mainly under two aspects: (i) as entropy 
measures which characterize the deviation of a fuzzy set from a crip one, 
and (ii) as energy measures which essentially characterize the deviation 
of a fuzzy set from a crisp singleton; cf. [Bandemer, Gottwald 1993]. 
This attitude toward measures of fuzziness and entropy measures for 
fuzzy sets puts them into a quite narrow understanding. The following 
paper of SANDER intends to widen this understanding in that it embeds 
such entropy measure into the wider area of general entropy functions 
discussed in modern information theory. It remains to be seen if such an 
approach may open further doors for a quantitative information theory 
for fuzzy informations besides e.g. possibilistic information theory and 
Dempster-Shafer theory; cf. [Klir, Folger 1988, Klir 1991]. 
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4 Fuzzified Mathematical Notions and 
Structures 

Large parts of modern mathematics are seen as to be based on a set 
theoretic foundation, especially in topology and algebra. Thus a gen­
eralization of the notion of set can almost straightforward be used to 
generalize such parts of mathematics. But as always inside mathemat­
ics, such generalizations may (i) prove to be of real value and open new 
and fruitful areas for research, or (ii) may be of a superficial nature and 
nothing more than mere intellectual toying. Unfortunately, at the very 
beginning it is quite hard to give a serious evaluation concerning these 
types of generalization w.r.t. some specific topic. 

In the first years after the seminal paper [Zadeh 1965] the overwhelm­
ing majority of mathematicians looked at fuzzifications of mathematical 
structures as at generalizations of type (ii). The only exception seemed 
to be the study of fuzzy relations because of their clear relationships to 
problems in theoretical computer science and the treatment of uncertain 
informations. Meanwhile, the situation has changed. The forerunner of 
this development inside mathematics has been fuzzy topology with its 
categorical methods and its applications also outside fuzzified mathe­
matical structures like to probabilistic topological spaces, lattice theory, 
locales and Stone representation theory; cf. [Lowen et al. 1991, Rod­
abaugh 1991, Rodabaugh et al. 1992]. 

Not so clear, actually, is the situation w.r.t. fuzzified algebraic struc­
tures like fuzzy groups etc. Their definitions essentially follow a standard 
pattern: given a crisp basic structure like a group 9 = (G,·, -I), a fuzzy 
subgroup is some S E IF(g) such that 

[x € S &t Y € S -+t X· y-l € S] = 1 (16) 

holds true for all x, y E 9 and some t-norm t. Actually, there is a lot of 
nice mathematics which can be done on such a basis; cf. [Wang 1993]. 
Nevertheless, it is essentially an open problem which true applications 
outside fuzzified mathematics these structures will have. Therefore we 
shall not go into more details here. 
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5.2. Solvability Considerations 
for N on-Elementary 

Fuzzy Relational Equations 

Siegfried Gottwald 

Abstract 

Determining a fuzzy controller is a two step process. First one 
has to fix the control rules which in general have the form: IF 

Q = Ai THEN fJ = Bi, i = 1, ... , N for some (perhaps multidi­
mensional) input variable Q and output variable fl. And then one 
has to convert these control rules into a fuzzy relation R and to 
apply this relation via the compositional rule of inference to any 
fuzzy input value of Q. Ideally the rule inputs Ai should trans­
form into the rule outputs Bi = Ai 0 R. Thus, mathematically 
this second step can be seen as the problem to solve a system of 
fuzzy relational equation for an unknown fuzzy relation. 

Besides these simple, "elementary" types of equations also 
other, more complicated types of equations have been discussed 
in fuzzy control theory. The present paper discusses some aspects 
of how results from the solvability theory of elementary fuzzy re­
lational equations can be extended to discuss also more involved 
types of relational equations. 

221 

1 Elementary and non-elementary fuzzy 
relational equations 

Fuzzy relational equations usually are written down in the form A 0 R = 
B with fuzzy sets A E IF(X), B E IF(Y) and a fuzzy relation R E 
IF(X x Y). Here X and Yare the corresponding universes of discourse. 
In terms of the membership degrees this equation reads: 

PB(Y) = sup min{PA(x),PR(X,y)}, (1) 
",ex 
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or in the terminology which explicitely refers to the background from 
many-valued logic: 

[y£ B] = [3x(x £ A 1\ (x, y) £ R)]. (2) 

Here (1) is just the well known compositional rule of inference which was 
introduced in [Zadeh 1973]. 

These elementary fuzzy relational equations have been generalized in 
different ways, usually with a background in ideas related to fuzzy con­
trol. 

Main types of non-elementary fuzzy relational equations studied so far 
and which are of special significance for applications in the field of fuzzy 
modelling include the following: 

(1) fuzzy relational equations B = A 0t R with sup-t-composition 

which is strongly connected with the compositional rule of inference. 

(2) fuzzy relational equations B = A 0t R with inf-s-composition 

which in a suitable sense are dual to the foregoing case; 

(3) 

(4) 

(3) adjoint fuzzy relational equations B = A \l t R of [Pedrycz 1985] with 
inf-<p-composition 

(5) 

Besides these types, which might be viewed as being of a basic nature, 
one can consider some types of a more complex form which sometimes 
are formed on the basis of the types given above. Of such possibilities 
two shall be mentioned: 

(4) a convex combination B = ,\ . (A 0t Rd + (1 - ,\) . (A OSt. R2) of 

equations of types (3) and (4) as in [Ohsato, Sekiguchi 1983] 

J.'B(Y) = ,\(y). (sup (J.'A(X) St J.'R.(X, y)))+ 
:rEX 

+(l-,\(y»· inf(J.'A(x)St J.'R2 (X,y» 
:rEX • 

(6) 
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with ;\ : y -+ [0,1] and with the t-norm t, as well as the t-conorm St. ' 
in [Ohsato, Sekiguchi 1983] taken as max, min only; 

(5) fuzzy relational equations B = A ~t R with an equality operator as 
discussed in [diNola et al. 1988] 

I-'B(Y) = sup (I-'A(X) <Pt I-'R(X, y) 1\ (I-'R(X, y) <Pt I-'A(X»). (7) 
.,ex 

For all the basic forms of equations (3) - (5) the family of solutions, 
if solutions do exist at all, has been characterized and their extremal 
(maximal or minimal) elements have been obtained. Moreover, for sys­
tems 

Bi Ai 0t R, i= 1, ... ,N (8) 

Bi Ai <>t R, i= 1, ... ,N (9) 

Bi Ai "ilt R, i = 1, ... ,N (10) 

of such equations the relevant results are also available - mainly under 
the condition that they do have an exact solution. 

To have an overall picture of the results they are collected in Table 1. 

Type of Solution Ito a Solution1to a 
equation sinde equation system of equations 

B = AOtR, R= A t>t B R = n~=l (Ai t>tBi) 
sup-t-

R= supR' R = n7=1 sup R'i composition 

B = A<>t R, R= A<lt B k = U~=l (Ai <It Bi) 
inf-s-

R = inf R" R = U7::1 inf R"i 
composition 

B = A t>tR, R= A Xt B R = U7::1 (Ai Xt Bi) 
inf-<p- R = inf R'" - Un. '" 
composition R = i=llDfR i 

Table 1: Basic non-elementary types of fuzzy relation equations for 
control applications 

1 in case of solvability 



224 Theory of Fuzzy Systems 

Concerning the notation used in this table we have to add some ex­
planations. First, by R', R", Rill we denote the sets of solutions of the 
systems (8), (9), (10) respectively of fuzzy relational equations. Sec­
ondly, related with the <t>-operator CPt one has a kind of "product" t>t 
giving a fuzzy relation T := A t>t B out of fuzzy sets A, B defined by 

(11) 

And finally as a dual to the <t>-operator CPt we use the .8-operator defined 
for all u, v E [0,1] as: 

u.8t v =deJ inf{ w E [0,1] lust w 2: v} (12) 

and connect with it now an operator <It "dual" to t>t which for fuzzy 
sets A, B again gives a fuzzy relation S := A <It B characterized by 

(13) 

At present however, for the general case it seems quite difficult to 
give simple and easy-to-check conditions for the solvability of a system 
of equations. This was one of the reasons for the discussion of degrees 
of solvability for example in [Gottwald 1986]. Thus, the results e.g. of 
Table 1 have a significant value only in the case that solutions really 
exist, i.e. that not only "approximate" solutions (in some suitable sense 
of that word) exist. If this true solvability is not the case - and it is 
this more uncomfortable situation one usually meets in practice - then 
because of the (present) lack of an extended mathematical theory of 
such (systems of) equations, the user has to think about other ways of 
overcoming the problem of the nonexistence of '(true) solutions. 

A simple, and perhaps for the practitioner the most obvious, way out 
is to use the formulas which describe solutions - in the case of solvability 
- even if a solution to the system of fuzzy relation equations to be consid­
ered does not exist - and then to check the quality of the "approximate 
solution" derived in this way. 

But having taken this point of view one can move one step further: 
instead of having proven a formula to give a solution in the case of 
solvability, one can start from a formula which one guesses to describe 
a solution - of course, if there are some acceptable reasons for such 
a guess. And, indeed, for some classes of fuzzy relational equations 
such acceptable guesses are available. To present some basic ones let us 
distinguish for relational equations 8(R, A) = B two different types. 
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Definition 1 A fuzzy equation 8(R, A) = B will be said to be of sup­
type in the case that one has 

J.'B(Y) = J.'e(A, R)(y) = sup F(PA(X),J.'R(X, y» (14) 
zEX 

where the term r is built up using the membership degrees PA(a), J.'R(a, b) 
and combining them for example by a t-norm, a ~-operator or some suit­
able other kinds of "simple" operators; and such an equation will be said 
to be of inf-type in the case that one has accordingly 

J.'B(Y) = J.'e(A, R)(y) = inf r(J.'A(X),J.'R(X, y». 
:EX 

(15) 

To show the influence of this distinction on the structure of the set 
of solutions of these equations we will consider the following facts which 
should be taken into account for the discussions of true and of approxi­
mate solutions. 

Fact 1: The union of any two solutions of a fuzzy relational equation 
of sup-type is again a solution to this equation, and hence this 
equation has a greatest solution. 

Fact 2: The intersection of any two solutions 9f a fuzzy relational equa­
tion of inf-type is again a solution to this equation, and hence this 
equation has a smallest solution. 

Fact 3: Any system of fuzzy relational equations of sup-type has in the 
case of solvability as the greatest solution the intersection of all 
the greatest solutions of its single equations. 

Fact 4: Any system of fuzzy relational equations of inf-type has in the 
case of solvability as the smallest solution the union of all the 
smallest solutions of its single equations. 

It is interesting to mention that these types of behaviour can also be 
found with some mixed types of fuzzy relational equations. To look at 
an example we refer to the convex combination form (6), (6) of fuzzy 
relational equations discussed by [Ohsato, Sekiguchi 1983, 1985] for A 0t 
Rl as sup-min-composition and A <>t R2 as inf-max-composition. Indeed, 
in [Ohsato, Sekiguchi 1985] a solvability behaviour of such equations is 
proven which combines Facts 1 and 2: the type (6) of equations has 
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an extremal solution (R1, R2) in the sense that R~ ~ R1 and R~ ~ R2 
for all solutions (RL R~) to this equation. Extending these results one 
can prove that for solutions (R~, ~) and (R~, R~) of this equation also 
(R~ u R~, R~ n R~) is a solution. And extending Facts 3 and 4 one 
can prove that an extremal solution of a system of such equations (6) 
is determined - in the case of its existence - in its ''first coordinate" as 
the intersection of the "first coordinates" of the extremal solutions of 
the single equations, and in its "second coordinate" as the union of the 
"second coordinates" of the extremal solutions of the single equations. 

2 Coupled pairs of non-elementary fuzzy 
relational equations 

Having designed a system of control rules for a fuzzy controller means 
that one has given a family of associated fuzzy sets 

(16) 

From a very general point of view now one has to determine a "relational 
structure" 'R. such that the fuzzy sets (16) satisfy it, i.e. that one always 
has 'R.(Ak, Bk). Caused by the fact that such a relational structure 'R. 
has an internal (logical) structure one thus has to reveal some logical 
structure within the data. 

The problem given in such a general setting requires further clarifi­
cation, in particular with respect to the structure of 'R.. Furthermore 
here our consideration is influenced by some ideas which relate fuzzy 
control and neural net techniques. Generally now the "relational struc­
ture" shall be treated as a cascade of fuzzy relational equations. These 
equations involve fuzzy sets and fuzzy relations combined by the rela­
tional composition operators 0 for max-t composition and # for min-s 
composition, t any t-norm and s their t-conorm. From the point of view 
of fuzzy relational equations we therefore are concerned with equations 
of the types 

B=AoR and B=A#R. (17) 

The relational structure 'R. with its cascade structure shall be described 
by nesting of those simple types of relational equations. For simplicity we 
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will restrict ourselves here to a two-level cascade structure with different 
standard compositions of both levels. This two-level structure implies 
that we have to consider an intermediate layer besides the input and 
output layers. The general construction of an intermediate layer between 
input and output fuzzy sets now means to consider e.g. coupled systems 
of fuzzy relational equations of the kind 

B = Z # G and Z = A 0 R, (18) 

or of the kind 

B = Z 0 G and Z = A # R. (19) 

In more explicite notation that means e.g. for the second case that one 
has 

I'B(Y) = sup [pz(z) tI'G(z, y)], 
zEZ 

I'z(Z) = inf [pA(X)SI'R(X,Z)] 
"'EX 

with an additional universe Z = {Zl, Z2, ... , zp} for the intermediate 
fuzzy sets. The essential role of that additional universe is to enhance 
the representation capabilities ofthe input/output mapping via our cas­
cading relational structure 'R. 

The original problem can be seen as that one of solving systems of 
relational equations originating out of such a structure. 

Bearing in mind the interpretation of t-norms as AND connectives and 
of t-conorms as OR connectives the system 'R conveys a clear structural 
interpretation. The min-s composition performs the role of an AND 

neuron combining inputs A(Xl)' A(X2)' ... , A(xn) - concisely 

Z(Z/) = AND (A, R/) 

or coordinatewise 

Z(Z/) = [A(Xt}ORR(Xl,Z/)] AND [A(X2)ORR(X2,Z/)] AND 

... AND [A(xn) ORR(xn , Z/)]. 

The max-t composition on the other hand realizes a so-called OR neuron 
which behaves dually to the AND neuron. 

When put together the corresponding expressions give rise to some 
structure with a clear logical characteristics. The fuzzy data accomo­
dated here modify the connections (viz. R and G) and create links within 
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the structure. The structure of n is essentially characterized by an in­
put layer X = {x!, ... , xn}, an output layer Y = {Yl, ... , Yn}, and the 
intermediate, hidden layer Z, each one of them a finite set of nodes. 

3 Solvability of coupled fuzzy relational 
equations 

The basic connection between both the types of relation equations men­
tioned in (17) is given by the facts that 

B=AoR 

B=A#R 

iff 

iff 

B=A#R, 
B=AoR. 

Here A denotes the complement of the fuzzy set A. 

(20) 
(21) 

From the two types of structural possibilities mentioned in (18) and 
(19) we are lead to two types of cascaded structures described by dif­
ferent types of systems of relational equations. For these structures the 
input/output behaviour realizing the data pairs (16) is to be modelled 
either by a coupled system of fuzzy relation equations of the form 

k= 1, ... ,N. (22) 

for a structure of the type (18), or for a structure of the type (19) by a 
coupled system of fuzzy relation equations of the form 

k= 1, ... ,N. (23) 

Furthermore we restrict for simplicity to the case t = min, but the 
extension to the general case is not an essential problem. 

Using the binary operations a and its dual £ in [0,1] as well as their 
variants@ and © for fuzzy sets (which produce fuzzy relations as re­
sults), cf. e.g. [Pedrycz 1989], one is able to translate the well-known 
solvability criterion of [Sanchez 1984] into the result: 

Proposition 1 A relational equation B = A # R for an unknown fuzzy 
relation R has a solution iff R = A 0 B is a solution of it; and if 
R = A © B is a solution it is the smallest one. 
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With those results in mind one is able to discuss the case N = 1 of one 
pair of fuzzy relational equations (22) and (23) which means to consider 
one of the coupled pairs of fuzzy relational equations 

B=Z#G 

B=ZoG 

and 

and 

Z=AoR, 

Z=A#R. 

(24) 

(25) 

Proposition 2 A coupled pair of relational equations (24) has as solu­
tion the pair of fuzzy relations 

(G, R) = (Z © B,A@ Z) (26) 

if and only if 

inf Z(z) ~ inf B(y) 
z y 

and supZ(z) ~ supA(x). 
z :z; 

(27) 

Here the "parameter" Z in the case that the input value A is a normal 
fuzzy set, i.e. has hgt (A) = 1, can easily be chosen in such a way that 
Z(zo) = 0 for some Zo E Z, which means that hgt (Z) = 1. Even in the 
case hgt (A) < 1 it is not a problem to find some Z meeting conditions 
(27). 

Hence, by (26) a whole family of solutions of the equations (24) is 
given. 

For equations (25) we have the dual situation. 

Our next problem of course is to extend these considerations to sys­
tems of coupled pairs of relational equations. 

Actually it seems to be quite difficult to discuss solutions of system 
(23). There is a tour de force approach which uses even the pairwise dis­
jointness of the intermediate fuzzy sets Zi as an additional assumption. 
But this assumption does not seem to be reasonable at all. 

For the other system (22) of coupled fuzzy relational equations the 
situation is much better because now the partial system 

Z" =A"oR, k= 1, ... ,N, (28) 

immediately refers to the input data of the process. For them it is much 
more reasonable to assume their pairwise disjointness 

for all 1 ~ i < j ~ N (29) 
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than to assume that condition for the intermediate fuzzy sets. There­
fore we decide to discuss the solvability of the system (22) under the 
additional assumption (29). 

Then parallel we consider the systems of equations 

k = 1, ... ,N, 

k= 1, ... ,N 

(30) 

(31) 

such that because of (21) both systems (30) and (31) together are equiv­
alent with the complete system (22). 

The previous remarks confirm us that the system (30) has well known 
solutions in case one supposes the disjointness (29) of the input data. 

Fortunately, for the system (31) we can follow the same strategy using 
the fact that our intermediate fuzzy sets Zk can be choosen in such a 
way that the fuzzy sets Z k, k = 1, ... ,N are pairwise disjoint, i.e. 

Zi U Zj = universal set over Z for all 1 :s i < j :s N. (32) 

Therefore (29) and (32) give as a result the following 

Proposition 3 Assuming the pairwise disjoint ness (29) of the input 
data and additionally that the intermediate fuzzy sets Zk, k = 1, ... ,N 
met the condition (32) then the whole system (22) has the "MAMDANI­

type" solution 

as well as the solution 

N N 

(R, G) = (n(Ak@ Zk), U(Zk © Bk»). 
k=l k=l 

All those results, however, have to refer to additional assumptions -
assumptions which in some cases seem to be very restrictive, and a little 
less restrictive in other cases. Anyway, those assumptions usually may 
be hard to be satisfied in real applications. In this respect, the situation 
with our coupled systems of fuzzy relational equations is not simpler 
as for the usual types of fuzzy relational equations as discussed e.g. in 
[diNola et al. 1989], [Gottwald 1986], [Gottwald 1993]. 
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5.3. Monoidal Logic 

Ulrich Hohle 

Abstract 

Monoidal logic is the a common framework for intuitionistic 
logic, Lukasiewicz logic and to a ceratin extent for Girard's com­
mutative logic. Soundness and completeness of the corresponding 
predicate calculi are verified. 

Keywords. Predicate calculus w.r. t. non-classical logics, Linden­
baum algebra, Heyting algebras, MV-algebras, Girard-monoids, 
t-norms. 

Introduction 
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The aim of this paper is to present the syntactic basis of fuzzy logic. For 
this purpose we specify the monoidal predicate calculus which turns out 
to be sound and complete. As special cases we obtain the intuitionistic 
predicate calculus, Girard's integral, commutative predicate calculus and 
Lukasiewicz predicate calculus. 

1 Monoidal predicate calculus 

Let C be a formalized language of first order and {-', 1\, V, -+, 1)9} be the 
set of logical symbols where -, is a unary and the remaining symbols are 
binary operations. The logical axioms of monoidallogic are the following 
axiom schemes 

(Td ((a -+ (3) -+ (((3 -+ ,) -+ (a -+ ,))) (Syllogism Law) 

(T2) (a -+ (a V (3)) 

(T3) (f3 -+ (a V f3)) 

(T4) «a -+ ,) -+ (((3 -+ ,) -+ «a V (3) -+ ,))) 

(T5) ((a 1\ (3) -+ a) 

(T~) «(a 1)9 (3) -+ a) 
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(T6) ( (a 1\ (3) -+ (3) 

(T~) ((a 0 (3) -+ ({30 a» 

(T~/) ((a 0 ({3 0 r» -+ ((a 0 (3) 0 r» 

(T7) ((r -+ a) -+ ((r -+ (3) -+ (r -+ (a 1\ (3)))) 

(Ts) ((a -+ ((3 -+ r» -+ ((a 0 (3) -+ r» (Importation Law) 

(T9) (((a 0 (3) -+ r) -+ (a -+ ({3 -+ r))) (Exportation Law) 

(TlO ) ((a 0 -.a) -+ (3) (Duns Scotus) 

(Tll) ((a -+ (a 0 -.a» -+ -.a) 

Further we assume the usual quantifier axioms - i.e. for every well 
formed formula a and for every term r for which the variable v is free 
in a the following expressions are axiom schemes 

(UI) (('v'v)a -+ a(v/r» 

(EG) (a(v/r) -+ (3v)a) 

The monoidal,predicate calculus PC is the usual predicate calculus based 
on the logical axioms (TI) - (Ts) , (T~), (T6), (T~), (T~'), (T7) - (Tll ) , 
on the quantifier axioms (UI) , (EG) , on Modus Ponens (MP) and the 
usual quantifier rules 

('v') From (a -+ (3) infer (a -+ ('v'v)(3) provided v is not free in a . 

(3) From (a -+ (3) infer ((3v)a -+ (3) provided v is not free in {3 . 

We apply the usual notations - e.g. if a is provable, then this situa­
tion is denoted by f- a . 

Lelllllla 1.1 Let PC be the monoidal predicate calculus. Then for all 
a, {3, r E C the following relations hold 

(i) f- (a -+ a) 

(ii) f- ((a 0 (a -+ (3» -+ (3) 
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(iii) ~ (a ~ ({J ~ ({J ® a))) 

(iv) If ~ a , then 

(v) ~ (a ~ ({J ~ a» 
(vi) ~ «{J ~ r) ~ «a ® (J) ~ (a ® r))) 

Proof. Because of the exportation law (T9) the formula 

««(a ® a) ---> a) ® a) ---> a) ---> «(a ® a) ---> a) ---> (a ~ a))) 

is provable. Then (i) follows from (Tt), (T~), (T~) and several applications 
of (MP) . The relation (iv) is a consequence of (iii) . Further (ii), (iii) 
and (v) follow immediately from (i), (Tt); (T~), (T~), (Ts) and (T9) . In 
oder to verify (vi) we first infer from (ii), (iii), (Tt) and (T~) that the 
formula 

«{J ® ({J ---> r» ---> (a ---> (a ® r»)) 
is provable. Hence (vi) follows from (Tt), (T~), (T~'), (Ts) and (T9) . 
o 

An important consequence of the syllogism law and the assertion (i) is 
the fact that the relation I> defined by 

is a preorder on the set C of all well formed formulas. If "'" is the 
equivalence relation associated with I> (i.e. a "'" {J ¢:::::} ~ (a ~ 
(J) and ~ ({J ~ a», then we can consider the quotient L = C/ "'" 
of all equivalence classes of logically equivalent formulas. In particular 
I> induces a partial ordering::; on L . Referring to (T2) - (T7 ), (TlO ) 

and (v) it is easy to see that (L,::;) is a lattice with the top elemnt 
1 = {a ELI ~ a} .Because of (Tt), (T~) and (vi) the logical 
symbol ® defines a binary operation * on L as follows 

[a] * [{J] where a' E [a], {J' E [{J] 

i,From the axioms (T~), (T~), (T~'), (Ts), (T9) and (iv) we conclude that 
(L,::;, *) is an integral, residuated, commutative I-monoid ([2]); i.e. 
(L,::;) is a lattice with top and bottom element, (L, *) is a commu­
tative monoid in which the unity coincides with the top element 1, and 
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there exists a further binary operation -+ satisfying the following axiom 

( AD ) (H {3 5, 'Y ¢:::::} 0' 5, {3 -+ 'Y 

In accordance with the terminology introduced by H. Rasiowa and R. 
Sikorski ([12]) the triple (L, 5" *) is also called the Lindenbaum algebra 
of the monoidal predicate calculus. Moreover we can show in the usual 
way that the following relations hold 

[(V'v)O'] AJO'(v/r)] [(3v)0'] I\[O'(v/r)] 
T T 

Before we continue the discussion of the axioms of monoidal logic we 
first make a short digression into the theory of integral, commutative, 
residuated l-monoids. 

2 Remarks on integral, commutative, resid­
uated l-monoids 

An integral, commutative, residuated I-monoid (L, 5" *) is said to be 
divisible iff for every pair (0', (3) E L with 0' 5, {3 there exists 'Y E L 
s.t. 0' = {3 * 'Y . An integral, commutative, residuated I-monoid is 
called a Girard-monoid iff the "negation" is an involution - i.e. (0' -+ 

0) -+ ° = 0' . An MV-algebra is an integral, divisible, commutative 
Girard-monoid. 

Examples 2.1 (Real unit interval) Any left-continuous t-norm (cf. 
[14]) determines on the real unit interval [0,1] the strucuture of an inte­
gral, commutative, residuated I-monoid. Further the nilpotent minimum 
To (cf. [4]) 

To(x, y) { Min(x, Y6 l<x+y 
x+y5,l 

defines on [0,1] the structure of an integral, commutative Girard-monoid 
which is not an MV-algebra. 
Integral, divisible, commutative, residuated l-monoidal structures on 
[0,1] are exactly given by continuous t-norms. In particular Lukasiewicz 
arithmetic conjunction T m (cf. [5]) 

Max(x+y-1,0) 
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induces an MV-algebra structure on [0,1]. It is interesting to see that the 
"negations" w.r.t. To and w.r.t. Tm coincide with L.A. Zadeh's negation 
n (cf. [17]) 

n(x) I-x 

Finally we remark that the usual product determines an integral, divis­
ible, monoidal structure on [0,1] which is neither a Heyting algebra nor 
an MV -algebra. 

Theorem 2.2 ([10]) The MacNeille completion of an integral, commu­
tative, residuated I-monoid is again an integral, commutative, residuated 
I-monoid. In particular the structure of H eyting algebras as well as of in­
tegral, commutative Girard-monoids are preserved under the MacNeille 
completion. 

It is an important observation that the MacNeille completion does not 
preserve the divisibility of integral, commutative, residuated l-monoids. 
In this respect we have the following 

Theorem 2.3 ([10)) Let M = (L,~, *) be an MV-algebra. Then the 
following assertions are equivalent 

(i) The MacNeille completion of M is again an MV-algebra. 

(ii) 'Va E L with a i: 1 3n E IN s.t. l 

1 

It is well known (cf. [1], [10]) that the condition (ii) in the previous 
theorem 2.3 is equivalent to the semi-simplicity of MV-algebras. 
An MV-algebra is called O'-complete iff the underlying lattice (L, ~) is 
O'-complete -i.e. countable joins and meets exist in (L, ~). 

Proposition 2.4 (Sufficient Condition for Semi-simplicity ([1]) 
Every O'-complete MV-algebra is semi-simple. 

Theorem 2.5 (Tarski's Lemma ([10))) Let M = (L,~, *) be a 0'­

complete MV-algebra and 00 E L with 00 i: 1 . Further let {Anln E IN} 
be a countable family of countable subsets An of L. Then there exists an 
MV-algebrahomo-
morphism h : M I----> ([0, 1], ~,Tm) provided with the following properties 

(1) h(ao) i: 1 

(2) inf h({3) 
,BEAn 

h(AAn) for all n E IN 

Ian denotes the n-th power of a w.r.t. * . 
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3 Special Cases of Monoidal Logics 

Remark 3.1 We add to the system of logical axioms of monoidallogic 
the law of idempotency - i.e. the axiom schema 

Then the logical symbols ® and 1\ are logically equivalent and the Lin­
denbaum algebra is a Heyting algebra ([11]). In this context the extended 
axiom system reduces to the axioms of intuitionistic logic and PC coin­
cides with the intuitionistic predicate calculus. 

Remark 3.2 If we adjoin to the axioms of monoidal logic the law of 
double negation - i.e. the axiom scheme 

then the Lindenbaum algebra is an integral, commutative Girard-monoid, 
and we arrive at Girard's integral, commutative linear logic ([6]). 

Remark 3.3 If we add to the axiom system of monoidallogic the law 
of divisibility - i.e. the axiom schema 

(T~~) ((a 1\ (3) --> (a ® (a --> (3))) 

and the law of double negation (T~~) , then the Lindenbaum algebra 
is a divisible Girard-monoid - i.e. an MV-algebra (cf. [3]). In this 
context the extended axiom system reduces to the Wajsberg axioms of 
Lukasiewicz logic ,namely to the following well known system 

(a --> (13 --> a)) 

(( a --> (3) --> (((3 --> I) --> (a --> I))) 

( ( (a --> (3) --> (3) --> (((3 --> a) --> a)) 

(( -.a --> -.(3) --> ((3 --> a)) 

(Affirmation of the Consequent) 

(Syllogism Law) 

(Contraposition Law) 

In particular we obtain Lukasiewicz predicate calculus ([9]). 

Finally, if we adjoin to the axioms of monoidal logic the axIOm 
(T\~), (T~~), 
(T12 ), then we arrive at the classical predicate calculus; and the Linden­
baum algebra is a Boolean algebra ([16]) 
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4 Soundness and completeness 

Let M = (L,::;, *) be an integral, commutative cl-monoid - i.e. an 
integral, commutative, residuated I-monoid such that the underlying 
lattice (L,::;) is complete ([2]). AM-valued intepretation of PC consists 
of an univers X and two mappings cI> and 'If where 

• cI> assigns to every n-ary functional symbol f an n-ary operation 
cI>(J) : xn 1--+ X on X , 

• lit assigns to every n-ary predicate symbol p a map 
lIt(p) : xn 1--+ L . 

Further let V be the set of all individual variables v and T the set of 
all terms r. On T we consider the algebra structure induced by the 
functional symbols It, h, . ... Then every valuation v : V 1--+ X can 
uniquely be extended to an algebra-homomorphism hv : T 1--+ X . In 
particular we have 

Moreover every valuation v determines a map 0 v : £ 1--+ L as follows 

1. 0 v(p(rl, ... ,rn)) 

( atomic formulas) 

['If(p)](hv(rd,···, hv(rn)) 

2. 0 v ( --'0:) 

0 v (0: -> f3) 

0 v (0:0 f3) 

(0v (0:) -> 0) 

3. 

4. 

5. 

0 v (o:Af3) 

0 v (o:Vf3) 

0 v ((Vv)0:) 

0 v ((3v)0:) 

0 v (0:) -> 0 v (f3) 

0 v (0:) * 0 v (f3) 

0 v (0:) A 0 v (f3) 

0 v (0:) V 0 v (f3) 

1\ 0 vJo:) 
xEX 

V 8 vJo:) 
xEX 

We use the following terminology: Let M be an integral, commu­
tative c1-monoid; a well-formed formula 0: E £ is said to be M-valid iff 
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8 v (0') = 1 for all M-valued intepretations of PC and for all valuations 
1/. 0' E C is called ICL-valid iff 0' is M-valid for all integral, commuta­
tive cl-monoids M. 0' E C is HA-valid iff 0' is fl-valid for all complete 
Heyting algebras fl ([7]). 0' E C is CGQ-valid iff 0' is M-valid for all 
integral, commutative, complete Girard-monoids (i.e. for all integral, 
commutative Girard quantales ([13]) M . 0' E C is MV-valid iff 0' is 
M-valid for all complete MV-algebras M. 

l,From Theorem 2.2 we obtain immediately: 

Theorem 4.1 (Soundness and Completeness) The monoidal pred­
icate calculus is sound and complete - i. e. 0' is provable iff 0' is ICL­
valid. The predicate calculus w. r. t. Girard's integral commutative linear 
logic is sound and complete - i. e. 0' is provable w. r. t. Girard's integral, 
commutative, linear logic (cf. Remark 3.2) iff 0' is CGQ-valid. The in­
tuitionistic predicate calculus is sound and complete -i. e. 0' is provable 
w. r. t. the intuitionistic logic (cf. Remark 3.1) iff 0' is HA -valid. 

Referring to Scarpellini's result (cf. [15)) Lukasiewicz predicate cal­
culus is sound but incomplete. In order to overcome this difficulty we 
add an additional, infinitary inference rule 

(R) From ((0' -+ 0) -+ an) for all natural numbers n E IN , infer 
0' 

to Lukasiewicz predicate calculus. This approach leads to a modified 
version of Lukasiewicz predicate calculus denoted by LPC* . Since the 
Lindenbaum algebra of LPC* is semi-simple, the MacNeille completion 
preserves its MV-algebra structure. Applying the version of Tarski's 
Lemma stated in Theorem 2.5 we can follow the strategy of H. Rasiowa 
and R. Sikorski's proof of G8del's completeness theorem and obtain the 
important 

Theorem 4.2 Let 0' be a well-formed formula. Then the following as­
sertions are eqUivalent 

(i) 0' is provable in LPC* . 

(ii) 0' is MV-valid. 

(iii) 0' is ([0, 1],~, Tm)-valid. 
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In view of Theorem 4.2 LPC* is sound and complete. In particular a 
well-formed formula a is provable in LPC* if and only iffor every [0,1]­
valued interpretation and for every valuation v the value of 0 v at a 
attains 1 (i.e 0 v (a) 1). 

Therefore we view the calculus LPC* as the syntactic counterpart of 
fuzzy logic. 

Addition. The equivalence between the assertions (i) and (iii) in The­
orem 4.2 was first established by L. Hay [9] 

5 Concluding remark 

We finish this paper with a discussion of Axiom (T~) . It is not difficult 
to see that (T~) forces the integrality of the monoidal predicate calculus 
- i.e. that unity and top element of the corresponding Lindenbaum 
algebra coincide. If the reader does not like this limitation, we emphasize 
that he can easily over com me this obstacle - e.g. we can introduce a 
logical constant 1 and replace (T~),(TI0) and (Tn) by the following axiom 
schemes 

(T5) (a -+ (10 a» 
(T5) «10 a) -+ a) 

(TlO) «a 0 -.a) -+ -.1) 

(Tll) «a -+ -.1) -+ -.a) 

In this situation the Lindenbaum algebra is a commutative, residuated 
I-monoid in which the unity [1] is different from the top element. The 
subsequent relation is valid 

I- a iff [1]:S [a 1 iff I- (1 -+ a) 

N ow the semantic side requires general, commutative cl-monoids M (cf. 
[2]), and, if 1 is the unity of M, then M-validity of a well-formed formula 
a means of course that the inequality 1:S 0 v (a) holds for all M­
valued interpret ions of PC and for all valuations v. 
Finally, if we add the law of double negation (d. Remark 3.2), then 
we arrive "at Girard's (non-integraQ commutative,linear logic without 
modalities ([6]). 
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5.4. Interpolation and Approximation 
of Real Input-Output Functions 

U sing Fuzzy Rule Bases 
Peter Bauer, Erich Peter Klement, 

Albert Leikermoser and Bernhard Moser 

Abstract 
It is shown how fuzzy controllers, in particular the Mamdani 

and Sugeno controller, can be used to interpolate and approximate 
control functions, i.e., input-output functions which assign to each 
input value a real output value. 

1 Fuzzy controllers 

245 

In this paper we shall restrict ourselves to the two most important and 
most widely used fuzzy controllers, the Mamdani [7] and the Sugeno 
controller [8]. For a general overview on fuzzy control, see, e.g., [3]. 

We start with the Mamdani controller which uses fuzzy sets both 
for input and output and, therefore, needs a defuzzification in order to 
produce an input-output function. 

Definition 1 Let X be an arbitrary input space, let AI, A 2 , ... , An 
and B 1 , B 2 , ... , Bn be normalized fuzzy subsets with Borel-measurable 
membership functions of X and Rm, respectively, let T be a Borel­
measurable t-norm, and consider the rulebase (i = 1,2, ... , n) 

IF x is Ai THEN u is Bi. 

Then, provided we have f JlR(X, u) du > 0, the Mamdani controller de­
fines the following input-output function FM : X -> R m 

1. JlR(X, u) . u du 
FM(x) = Rm , (1) 

f JlR(x,u)du JRm 
where the membership function JlR of the fuzzy relation R on X x R m 

is given by 

JlR(X, u) = max [T(J.lAJ (x), J.lBJ (u)), T(J.lA2 (x), J.lB2(U)), ... , 

T(JlAn(x),JlBJU))]. (2) 
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In a strict mathematical sense, the measurability requirements are 
necessary for (1) to be well-defined; in practical situations, these hy­
potheses, however, are usually satisfied. 

In Definition 1 we have implicitly chosen a special defuzzification 
method, namely, the so-called center of area, which is basically contained 
in equation (1). We only mention that there are also other methods of 
defuzzification, e.g., the mean of maximum. 

In most practical examples, the i-norm used for the Mamdani con­
troller is either the minimum TM or the product Tp; in the first case 
this is also referred to as max-min-inference, in the latter case as max­
prod-inference or max-dot-inference. 

The second important type of fuzzy controllers is the so-called Su­
geno controller which uses crisp values in the output space. In a way 
this means that the inference has a built-in defuzzification. 

Definition 2 Let X be an input space, let AI, A 2 , ••. , An be normal­
ized fuzzy subsets of X with L J.lA;(X) > 0 for all x EX, and h, 12, ... , 
fn be functions from X to Rm, and consider the rulebase (i = 1,2, ... , n) 

IF x is Ai THEN U = li(x). 

Then the Sugeno controller defines the following input-output function 
Fs : X --> R m 

LJ.lA;(X) . Ji(x) 
Fs(x) = '"' . 

L... J.lA;(X) 
(3) 

In the special situation, when for i = 1,2, ... , n the functions Ii are 
constant, i.e., fi(x) = Ui, the Sugeno controller can be considered as a 
special case of the Mamdani controller: 

Theorem 1 Let X be an input space, let T be a i-norm, lei AI, A2 , ••• , 

An be normalized fuzzy subsets of X with L J.lA; (x) > 0 for all x EX, 
let UI, U2, ... , Un be different elements of Rm, consider the rulebase 
(i=I,2, ... ,n) 

IF x is Ai THEN U = ui, 

and let Fs be the input-output function 01 the corresponding Sugeno 
controller. Then there exists a Mamdani controller with input space X 
such that its corresponding input-output function FM coincides with Fs. 
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PROOF. For each positive £ and each i = 1,2, ... , n consider the 
I d b II B(E) • h (1) (2) (m») R m c ose £- a j WIt center Uj = u j , u j , ••• , u j E 

B}E) = ((u(1),u(2), ... ,u(m») E R m I 
max{lu(1) - uP)!, lu(2) - u~2)1, ... , Iu(m) - u~m)j}::; £}, (4) 

and the rulebase (i = 1,2, ... , n) 

IF x is Aj THEN U is B}E). 

There exists an £0 > 0 such that for all i # j we have BiEO ) n BJEO ) = 0, 
and the fuzzy relation R(EO) defined in (2) induced by the corresponding 
Mamdani controller becomes 

max {T(JlA;(X),JlB«o)(u)) liE {1, 2, ... , n}} . 
{ ~A.(X) if x E B~€o) . , 

otherwise. 

The resulting input-output function Fto) then yields 

showing that Fto) = Fs. 

f JlR«o) (x, u) du JRm 

L: [1.: .. , PA,(Z) udu 1 
(2£0)m . LJlA;(X) 

L: [PA,(X)' 1.: .. , UdU] 
(2£0)m· LJlA;(x) 

(2£0)m. LJlA;(X) 'Uj 

(2£0)m . LJlA;(X) , 

Fs(x). 

o 
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In R m we can consider crisp points xo, i.e., one-point sets {xo}, as 

limits of closed c-balls B}€) as c goes to zero. Therefore Theorem 1 also 
says that Sugeno controllers (with constant functions Ii) are limits of 
suitable Mamdani controllers, a result which holds for other defuzzifica­
tion methods too. 

2 Uniform approximation 

It is rather natural to ask which input-output functions can be modeled 
or approximated using fuzzy controllers. There are several results show­
ing that Sugeno controllers can be used to approximate in a uniform 
way continuous input-output functions defined on a compact subset of 
Rm. The following theorem can be found in [9], where also the complete 
proof is presented: 

Theorem 2 LetD = [a(1),b(1)]x[a(2),b(2)]x ... [a(m),b(m)] be a compact 
subset of R m , f : D --+ R a continuous function and c > 0. Then 
there exist real numbers Ul, U2, ... , UK, fuzzy subsets A~i) of [a(i) , b(i)] 
(i = 1,2, ... , m; k = 1,2, ... , K) with Gaussian membership functions 

with o:~i) E (0, 1], x~i) E R, at) E (0,00), and a rule base (k 
O,I, ... ,l{) 

IF x(1) is A~l) AND x(2) is A~2) AND ... AND x(m) 2S A~m) 

THEN U = Uk, 

(5) 

such that the input-output function Fs of the corresponding Sugeno con­
troller (using the t-norm Tp for the Cartesian product) satisfies 

sup {IFs(x) - f(x)li XED} < c. (6) 

l,From the point of view of a designer of a controller, Theorem 2 
does not help a lot: its proof relies on the classical Stone-WeierstraB 
Theorem and is purely existential in nature, as it provides no hint at 
all which Sugeno controller should be chosen to approximate a concrete 
input-output function. Also, if the tolerances E go to zero, the number 
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of rules in general will not be bounded. Theorem 2 only states that, 
given a certain tolerance c, there exists always a Sugeno controller whose 
input-output function Fs deviates from the given function less than the 
tolerance c. 

3 Interpolation by fuzzy systems 

Since the result of Theorem 2 is only of limited practical relevance, it 
is important to know which input-output functions can be modeled by 
fuzzy systems. In the case of a one-dimensional input it is possible to 
show that a large class of functions can be realized by Sugeno controllers 
[6, 1]. 

Theorem 3 Let f : [g, a] - R be a continuous, piecewise monotone 
function. Then there exist normalized fuzzy subsets Ao, AI, ... , An of 
[g, a], numbers uo, UI, ... , Un E R, and a rulebase (i = 0,1, ... , n) 

IF x is Ai THEN U = Ui 

such that the input-output function Fs of the corresponding Sugeno con­
troller coincides with f. 

PROOF. Choose a partition of [g, a], 

g = ao < al < ... < an-I < an = a, 

such that each restriction f/[a;_l,a.] (i = 1,2, ... , n) IS a monotone 
function, and define the functions Ii : [ai-I,ai]- R by 

{ 
f(x) - f(a;) 

fi(X) = {(ai-I) - f(a;) 
if f(ai-I} of f(a;), 

if f(ai-d = f(a;). 

Next we introduce the fuzzy subsets Ao, An and Ai (i = 1,2, ... , n - 1) 
of [g, a] by 

JlAo(x) { h(x) if x E lao, at}, 
0 otherwise, 

JlAJX) { I-fn(x) if x E [an-I, an], 
0 otherwise, 

{ l-li(x) if x E [ai-I, ai), 
JlA,(X) fi+I(X) if x E [ai, ai+t}, 

0 otherwise, 
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and the numbers Uo, U2, ..• , Un E R by 

Ui = f(a;). 

Observe that each x E [Q,"il] has a non-zero degree of membership 
in at most two of the fuzzy sets Ao, Ai, ... , An, and that we have 
L:7=o JlAi(X) = 1. Now take an arbitrary x E [Q,"il], say, x E [aio-l, aio) 
and compute the value of the input-output function induced by the 
Sugeno controller, yielding 

Fs(x) 
LJlAi(X). Ui 

LJlA.(X) 

f(aio-t} . ho(x) + f(aio) . (1- ho(x)) 
f(x). 

Since x was chosen arbitrarily, this means Fs = f. 0 

The proof of Theorem 3 heavily relies on the fact that, given two 
different points in the two-dimensional plane, there is always exactly 
one straight line segment joining them. This immediately makes clear 
that this result does not generalize in a straightforward way to inputs of 
dimension two: if four points in the three-dimensional space are given, 
then, in general, there is no plane containing all of them. This makes it 
necessary to replace the interpolation in Theorem 3 by an approximation, 
if the inputs have dimension two or higher (see Theorem 5). 

An alternative way of constructing an interpolating Sugeno controller 
for continuous functions, mapping a suitable subspace of Rm into R, is 
given as follows [1]: 

Theorem 4 Let D be a compact subset of R m and f : D -+ R a 
continuous function. Then there exist numbers Ul, U2 E R, normalized 
fuzzy subsets Ai, A2 of D, and a rulebase 

IF X is Ai THEN U = ul 

IF X is A2 THEN U = u2 

such that the input-output function F s of the corresponding Sugeno con­
troller coincides with f. 

PROOF. Denote Ul = min {J(x)Ix ED}, U2 = max {J(x)Ix ED}, 
which exist because of the continuity of f and the compactness of D, 
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J.tu,(U) 
U2 - U 

U2 - UI 

J.tU2(U) 
U - UI 

U2 - UI 

and introduce the fuzzy subsets AI, A2 of D by Ai = f-l(U;) ( i = 1,2), 
1.e., 

J.tA; (x) = J.tu; 0 f(x) = J.tu, (J(x»). 
Then obviously for each U E [UI,U2] we have J.tu,(u) + J.tu2(u) = 1 and, 
consequently, for each xED we get J.tA, (x) + J.tA2 (x) = 1. Therefore, 
the input-output function Fs of the Sugeno controller yields 

J.tA, (x) . UI + J.tA2(X) . U2 
Fs(x) = J.tA, (x) + J.tA2(X) 

U2 - f(x) f(x) - UI 
--'----'----'- . UI + . U2 

U2 - UI U2 - UI 

f(x), 

which means that Fs coincides with f on the whole domain D. 0 

In the case of a surjective function (which can always be achieved if 
we define C = f(D) and consider f : D -> C rather than f : D -> R) 
the interrelation between a fuzzy subset A of D, the corresponding U of 
C and the function f in Theorem 4 is given by U = f(A), where f(A) 
is defined according to the extension principle by 

J.tf(A) = sup {J.tA(X) I xED, U = f(x)}. (7) 

In the case of a one-dimensional input, i.e., if D = [~, x] is a closed 
interval in Rand f is a monotone surjective function, i.e., f : ~,x] -> 

[!!, ti], then the situation in Theorem 4 corresponds to the gradual rules 
considered in [4], since for each x E [~, x] we have 

J.tf(A;)(J(X» ~ J.tA,(X). (8) 

Although the result presented in Theorem 4 applies to inputs of any 
finite dimension, the fuzzy subsets Ai of R m , in general, are not Carte­
sian products of suitable fuzzy subsets of R. This can be seen if, e.g., 
we consider the input-output function f : [0,2]2 -> [0,1] given by 

f(x,y) = e-(x'+y'-l)'. 

The algorithm in the proof of Theorem 4 then yields a fuzzy subset A2 of 
[0,2]2 which obviously is no Cartesian product of fuzzy subsets of [0,2]. 
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4 Approximation by fuzzy systems 

As mentioned before, a straightforward generalization of the results of 
Theorem 3 to inputs of dimension higher than one, while keeping Carte­
sian products in the input space, is not possible. The following result 
shows that, in the two-dimensional case, all functions can be approxi­
mated by a Sugeno controller with arbitrary precision. The generaliza­
tion to inputs of higher dimension is straightforward. 

Theorem 5 Let f : [g, il] x [Q, Ii] --+ R be a function and let 

g = ao < a1 < ... < am-1 < am = il, 
Q = bo < b1 < ... < bn- 1 < bn = Ii, 

be partitions of the intervals [g, il] and [Q, Ii], respectively. Then there are 
normalized fuzzy subsets Ao, A 1, ... , Am and Bo, B1, ... , Bn of [g, ill 
and [Q, Ii], respectively, numbers Uoo, UlO, ... , Umn E R, and a rule base 
(i = 0,1, .. . ,m;j = 0,1, .. . ,n) 

IF x is Ai AND Y is Bj THEN U = Ujj 

such that the input-output function Fs of the corresponding Sugeno con­
troller coincides with f on all lattice points (aj, bj ), i. e., for all i = 
0,1, ... , m and all j = 0,1, ... , n we have 

(9) 

PROOF. Define first for i = 1,2, ... , m and j = 1,2, ... , n the num­
bers Uij by 

Ujj = f(aj,b j ), 

the fuzzy sets Ao, Am and AiJ (i = 1,2, ... , m - 1) by 

{ x - a] if x E [ao, a1), ao a1 
0 otherwise, 

{ x - am-1 
if x E [am-1, am], am am-1 

0 otherwise, 
/--LAm (X) 

{ 
x - aj-1 

if x E [ai - 1 , ai), aj - aj-1 
x - aj±l if x E [aj, ai+!), aj ai+1 

0 otherwise 
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and the fuzzy sets Bo, Bn and Bj (j = 1,2, ... ,n-l) by 

{ a if x E lbo, bt}, 
/-IBo(X) = 0- 1 

0 otherwise, 

{ x - bn- 1 if x E [bn- 1, bnL 
/-IBn (X) bn - bn- 1 

0 otherwise, 

{ 
x-b·_1 

if x E [bj_1,bj ), bj - 6j - 1 

/-IBj(X) X - bj +1 
if x E [bj, bj+l), bj - bj+1 

0 otherwise. 

Next consider the rulebase (i = 0,1, ... , m; j = 0,1, ... , n) 

IF x is Ai AND Y is B j THEN U = Uij 

and choose an arbitrary lattice point (aio,bjo ) (io = 0,1, .. . ,m; jo = 
0,1, ... , n). Obviously we have 

and for (i,j)::j:. (io,jo) 

and, therefore, for the input-output function of the corresponding Su­
geno controller Fs we get 

L .. /-IA; xBj (aio' bjo) 
',} 

/-IA;oxBjo(aio,bjo ) ·Uiojo 

f(aio,b jo )· 

Since the lattice point (aio, bjo ) was chosen arbitrarily, this shows that 
F s coincides with f on all lattice points (ai, bj ). 0 

Remark 1 This theorem has interesting practical consequences: 

(a) It is not difficult to see that the results of Theorem 5 can be gen­
eralized to arbitrary n-dimensional inputs. 
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(b) For each ai E [g, a], i = 0,1, ... , m, the one-dimensional section 
Fs( ai, .) : [Q, Ii] ---- R of the input-output function Fs of the approx­
imating Sugeno controller in Theorem 5 is a piecewise linear func­
tion. In particular, if Pij denotes the point (ai, bj , f( ai, bj)) E R 3 , 

and if the four points Piojo' Pio+1,jo, Pio,jo+1 and Pi o+l,jo+1 lie in 
a plane, then the restriction of the function Fs to the rectangle 
[aio, ai o+1] x [bjo' bjo+1] is a linear function. This means that a 
classical linear controller is a special case of the Sugeno controller. 
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5.5. Defuzzification As Crisp Decision 
Under Fuzzy Constraints - New 
Aspects of Theory and Improved 

Defuzzification Algorithms 

Thomas A. Runkler and Manfred Glesner 

Abstract 

Although defuzzification is an essential functional part of all 
fuzzy systems, it is not firmly embedded in fuzzy theory yet. 

Proceeding from fuzzy decision theory we define defuzzification 
as crisp decision under fuzzy constraints and achieve a new theo­
retical foundation of the defuzzification process. From these theo­
retical considerations we develop a new class of lucidly customiz­
able defuzzification procedures (constrained decision defuzzifica­
tion CDD). We develop powerful examples of CDD customiza­
tions and show that CDD is superior to the standard defuzzifica­
tion algorithms center of gravity and mean of maxima, represented 
by the parametric basic defuzzification distribution (BADD), con­
cerning static, dynamic and statistical properties. 

1 Introduction 

255 

Since the concept of fuzzy sets was first introduced by [Zadeh, 1965], 
it has been applied to many different fields, ranging from engineering 
applications (control [Runkler et al., 1992, e.g.], robotics, image and 
speech processing), biological and medical sciences to applied operations 
research and expert systems [Zimmermann, 1987]. 

Fuzzy systems internally process fuzzy values, which have to be 
mapped to crisp output in most applications. This mapping is called 
defuzzification. Although defuzzification is an essential part of most 
fuzzy systems, it is not firmly embedded in fuzzy set theory yet. 

We show that the results offuzzy decision theory [Dubois and Prade, 
1980, Zimmermann, 1987] serve as a theoretical foundation of defuzzifi­
cation. We develop a new theoretical approach defining defuzzification 
as crisp decision under fuzzy constraints (sections 2 and 3). 

The theoretical results achieved are of high practical relevance, be­
cause they lead to a new class of lucidly customizable defuzzification 
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procedures we refer to as constrained decision defuzzification (CDD). In 
section 4 we develop examples of some rational customizations of CDD. 

There are several categories of defuzzification method properties: sta­
tic, dynamic and statistical. Concerning these properties we examine 
the new CDD method in comparison with the standard methods center 
of gravity (COG) and mean of maxima (MOM). Even more generally 
we compare CDD with the basic defuzzification distribution (BADD) 
method [Filev and Yager, 1991, Yager, 1992], a parametric procedure 
which includes COG and MOM as special cases (section 5). 

2 Decisions Under Fuzzy Constraints 

A decision is defined ::s the solution of a ~iven multicriteria optimization 
problem with goals Gj and constraints Cj . In a fuzzy environment, we 
represent goals and constraints as fuzzy sets formally having the same 
nature. A fuzzy decision [Dubois and Prade, 1980, Zimmermann, 1987] 
(see Fig. 1) is defined as 

D(G1 , ... ,Gm ,G1 , ... ,Gn ):= n Gin n Gj . (1) 
j=l, ... ,m 

Without loss of generality we assume decisions with only one goal, 
hence 

(2) 
i=l, ... ,n 

We define the crisp decision d(G, G1 , ... , Gn ) under fuzzy constraints 
(see Fig. 1) as the mean value! of all x E X with maximum membership 
in D(G, G1, ... , Gn ). 

f-I(x) Goal G 
1 

x 

Crisp Decision d( G, G) 
Fig. 1: Fuzzy and crisp decision 

-----------------------
1 Other realizations are possible, but for optimization problems the mean of max-

ima value is the most reasonable. 
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Example 

The goal is to determine a desired room temperature {j close to 20°C, 
which satisfies the following constraints: 

1. One inhabitant is ill, so the temperature should be rather high, 
and, 

2. to avoid frost damage, the temperature must be higher than O°C. 

Solution 

We choose membership functions for the goal and the constraints as 

for {j :S lo°C, 
for lO°C < {j :S 20°C, 

for 20°C < {j :S 30°C, 
(3) 

(4) 

(5) 

As shown in Fig. 2, we determine the crisp decision, i.e. the desired tem­
perature as 1') = 24°C. 

/1('11) Goal G Constraint C2 

o '11 

Crisp Decision d(G,C1 ,C2 ) = 24°C 

Fig. 2: Example: temperature decision 
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3 Defuzzification as Decision 

3.1 The Mean Of Maxima Method 

The mean of maxima defuzzification can be interpreted as a crisp de­
cision without constraint2, where Q, the fuzzy system output, 
serves as the goal. We express defuzzification by a defuzzification 
operator ;:-1 mapping membership functions to crisp numbers and 
write: 

(6) 

3.2 Extended Defuzzification as Decision Under Non 
Trivial Constraints 

In general we allow non trivial constraints for the decision making process 
and achieve a formula for the constrained decision defuzzijication (eDD): 

(7) 

Generally, the constraints Ci depend on the fuzzy system output Q: 

(8) 

The constrained defuzzification operator (7) is a general purpose de­
fuzzification method. CDD is easily customizable using lucid constraint 
definitions. In the following, we give two typical examples for rational 
definitions of constraints. 

4 Examples 

4.1 Constraint "Near Center" 

Typically, the defuzzified value is required to be near the center of the 
membership function area, i.e. the product of the defuzzified value and 
the membership function area should be similar to the area's first mo­
ment: 

Pc. (x) ,~,im (x f Po ({) df.j {. Po ({) d{) . (9) 

2Fonnally, this is achieved using the universal set X as constraint. 
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We choose the gaussian function as a "natural" similarity function: 

(B-bt 
sim(a, b) := e- 2.. E (0, 1]. (10) 

If we choose the standard deviation (J' ---- 00, then i\ ---- X, and we 
achieve the mean of maxima method. If we choose the standard deviation 
(J' ---- 0, then 

(11) 

i.e. i\ becomes a singleton at the center of gravity of Q. Thus, we 
achieve the center of gravity (COG) method for (J' ---- O. 

4.2 Constraint "Membership 2 a" 

In many applications the membership of the defuzzified value is required 
to be larger than a certain value 0'. This can be forced by the constraint 
(see Fig. 3) 

/-Ie (x) = 1-0' I J.lij x > 0' { 
I'Q(x)-a 'f () 

2 0 else. 
(12) 

J.le2(a)(x) 
1 ..... . 

O+--I---~ J.lij(x) 
o 0' 1 

Fig. 3: Constraint "membership 2: 0''' 

5 Properties of the Constrained Defuzzifi­
cation 

We consider the CDD method :F't/c- (J.lij(x» using (9), (12) and exam-
1, , 

ine its properties in comparison with the basic defuzzification distribution 
(BADD) method [Filev and Yager, 1991, Yager, 1992]. BADD is a para­
metric defuzzification method including the standard methods COG and 
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MOM as special cases. The BADD defuzzification is defined as: 

with 

F- 1 (II(X) -v).- -,fx~~::-:P_Il_(_x)_"'I_._x_d_x 
BADD'" '/'- f XoUP (x)"'I dx 

Xinf Il 
FB"lDD (Il (x) , , = 1) = Fc6G (Il (x)) , 

FB"lDD (Il (x), ,- 00) = FM~M (Il (x)). 

5.1 Static Properties 

(13) 

(14) 

(15) 

[Runkler and Glesner, 1993c] developed a set of rational constraints for 
defuzzification methods. We apply these constraints to eDD to examine 
its static properties. 

As well as BADD, the eDD method violates the following rational 
constraints: strong Il-translation, t-norm, fuzzy number and prohibitive 
information property. Additionally, the Il-scaling property is violated. 
This is due to the fact, that the threshold value 0: remains constant when 
Il is scaled. This violation is of minor importance, i.e., concerning the 
static properties, eDD performs like BADD. 

5.2 Dynamic Properties 

We assume the typical case of a knowledge base with two symmetric, 
triangular, connected output membership functions "low" and "high", 
with firing grades hand 1- h (see Fig. 4)3 [Runkler and Glesner, 1993b]. 
For changing values of the firing grade4 h (i.e. for changing input) we 
calculate the defuzzified output using BADD and eDD for different pa­
rameter values, and obtain Fig. 5. 

For changing values of , the BADD output steadily slides from the 
mean of "high" to the mean of "low" with different slopes. The eDD 
output behaves differently: For small values of (j it slides from the mean 
of "high" to the mean of "low", while for increasing values of (j "low Il 
zones" are neglected. 

x 
Fig. 4: Connected membership functions 

3The output range [0,255] is chosen for convenience only. 
4 We assume max-min-inference. 
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256 256 
192 192 

;:-1 
BADD 128 ;:CbD 128 

64 64 
0 0 

0.0 0.5 1.0 0.0 0.5 1.0 

h h 
Fig. 5: Dynamic output using connected membership functions 

We examine the case of separate membership functions as shown in 
Fig. 6. BADD behaves like before: The output slides from "high" to 
"low" crossing the forbidden area where J.l = 0 (marked with dashed 
lines). This behavior is not acceptable in most applications (e.g. ro­
botics [Pfluger et at., 1992]). CDD shows a more desirable behavior: It 
strictly avoids zero J.l zones (cut off) and prefers high J.l zones (see Fig. 7). 

;:-1 
BADD 

1 

J.l(x) 

o +-1f--+-~--I'-+--1 
x 

Fig. 6: Separate membership functions 

256 
192 
128 ....,.-:==-:~===-=""' 
64 
o -+----r-----, 

0.0 0.5 

h 

1.0 

;:-1 
CDD 

256 - (J' --> 00 

192 - '" 0 (J'", 

128 -
64- -----~-
o -+---...,1----,1 

0.0 0.5 1.0 

h 
Fig. 7: Dynamic output using separate membership functions 

We have seen, that BADD defuzzification leads to undesirable results, 
when zero J.l intervals are used, while CDD prefers output with high 
membership leading to more reasonable results. 

5.3 Statistical Properties 

We measure BADD and eDD's preference for large membership val­
ues by defuzzifying random membership functions. We calculate the 
membership frequencies of the defuzzified values, h (J.l (;:-1 (J.l (x))), and 
achieve Fig. 8. 
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BADD results in output with the average membership 0.5 to 1. Even 
for high belief (high r) it frequently selects output with very low mem­
bership. CDD prefers output with membership between 0.65 and 1. Low 
P output is rare, and output with membership less than the threshold Q' 

is strictly avoided. 
We have shown, that from the statistical point of view, CDD is su­

perior to BADD, because it prefers values with high membership. 

100% 100% 
(J - 00 

75% 75% 

hBADD(p) 50% hCDD(/J) 50% 

25% 25% 

0% 0% 
0.0 0.5 1.0 0.0 0.5 1.0 

P P 

Fig. 8: Membership frequencies 

5.4 Implementation Effort 

The effort of the implementation of the CDD method strongly depends 
on the constraints and the hardware used. For the CDD example re­
garded in this paper the calculation effort is of the same dimension as 
for COG, and lower than for other BADD methods. 

If the fuzzy system is realized approximately, e.g. using B-splines 
[Runkler and Glesner, 1993a], the CDD operations can even be executed 
at compile time, decreasing the run time effort. Therefore the use of 
this advanced defuzzification method does not necessarily increase the 
system run time. 

6 Results 

We developed a new theoretical approach for defuzzification based on 
the fuzzy decision theory. We have shown that defuzzification can be 
regarded as a crisp decision under fuzzy constraints. 

These theoretical examinations resulted in the definition of a new 
class of lucidly customizable defuzzification procedures referred to as 
constrained decision defuzzification (eDD). We developed a typical cus­
tomization example. 
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We regarded three different categories of properties of defuzzifica­
tion operators: static, dynamic and statistical aspects. Compared to 
the parametric BADD method, the typically customized CDD defuzzi­
fication performed excellently. Concerning the static behavior, BADD 
and CDD results are almost equal. The CDD dynamics are superior to 
BADD's, especially when separate membership functions or zones with 
low membership values are used. Also concerning the membership values 
statistics, CDD behaves much better than BADD. 

Constrained decision defuzzification is a step towards a firm theo­
retical foundation of defuzzification and towards the design of new and 
better defuzzification operators. 
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5.6. Uncertainty and Fuzziness 

Wolfgang Sander 

Abstract 

There are different mathematical frameworks dealing with un­
certainty, vagueness and ambiguity: the probabilistic concept, the 
concept of a fuzzy set, and the concept of a fuzzy measure. The 
corresponding measures for the amount of relevant information 
lead to three types of uncertainty measures : Entropies or mea­
sures of information, measures of fuzziness and the uncertainty 
measures in the mathematical theory of evidence. 

One purpose of this paper is to focus on recent results of mea­
sures of fuzziness and to give a survey on characterizations of 
these measures. Moreover, we want to show that certain "total 
entropies" which consist of a "random part" and a "fuzzy part", 
are special cases of a more general information theory, where the 
entropies are dependent upon the events and the probabilities. 

1 Introduction 

265 

We first remember some basic definitions. In this paper we consider only 
discrete, finite sets 0 = {X1, ... ,Xn }. If I,g: 0 -+ [0,1] and h: 0'-+ 
[0,1] are fuzzy sets, then 1 V g, 1 1\ 9 E [0,1]0 and 1 x h E [0, I]OXO' are 
the functions defined by 

(f V g)(x) = max{J(x), g(x)}, (f 1\ g)(x) = min{J(x), g(x)} 

and 

(f x g)(x, y) = I(x)g(y) 

for all x E 0 and YEO'; moreover, 

n 

P(f) = L I(x;) 
;=1 

is the power of I. 
Now we assign a nonnegative real number to each fuzzy set 1 E [0,1]0 

that characterizes the degree of fuzziness of I. 
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Definition 1 
If 0. = {Xl, ... , Xn} is a finite set, then every function d [0,1]°-> 
IRo = [0,00) satisfying 

for some mapping In : [0,1] -> IRo is called a measure of fuzziness or a 
fuzzy entropy. 

This definition says that a fuzzy entropy can be regarded as an en­
tropy in the sense that it measures the uncertainty about the presence 
or absence of a certain property over the set o.. In the case of a finite 
basic set 0. the fuzzy entropy d(f) is determined by the function values 
ofo.. 

The above definition is analogous to the following definition of more 
general (probabilistic) entropies. If we interpret the elements Xl, ... , Xn 
of 0. as elements of a ring B of subsets ( containing, with any two 
sets,their union and difference, and thus also their intersection and the 
empty set 0 ) and as the possible events of an experiment having proba­
bilities PI, ... ,Pn, respectively then we get the following definition using 
the notations 

n 

r n = {P = (Pl. ... ,Pn) : L Pi = 1, Pi ~ O}, n ~ 2 (1) 
i=l 

and 

o.n = {X = (x, ... , xn) : XifB, Xi n Xj = 0, if. i}, n> 2 : (2) 

Definition 2 

Let 0. = {Xl, ... , xn} be a finite set. Then every sequence (In) or 
(Gn ) with 

or 

is called an entropy or a generalized entropy (inset entropy fo short) , 
respectively. 

We remark that generalized entropies are also called inset informa­
tion measures (the name was chosen because the idea for these type of 
measures was born at a meeting at the Ecole Normale Superieure de 
l'Enseignment Technique - ENSET - near Paris). Note that the mea­
sures (Gn ) may depend on both the probabilities and the events [ACZ(~I, 
Dar6czy 1978] whereas (In) depend only upon the probabilities. 
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2 Characterizations of fuzzy entropies 

A main purpose of an axiomatic theory for measures of uncertainty is 
to find and characterize measures of uncertainty having certain useful 
properties. Concerning entropies and generalized entropies there are a 
lot of characterization theorems [Aczel, Dar6czy 1975, Aczel 1984, Aczel, 
Dar6czy 1978, Sander 1987, GroB 1993] whereas in the mathematical the­
ory of evidence there are only few results in this direction [Klir, Folger 
1988, p. 297ff]. In this section we want to focus on measures of fuzzi­
ness or fuzzy entropies. There are many" useful" properties to qualify 
as a meaningful fuzzy entropy [Dubois, Prade 1980, p.32ff, Klir, Folger 
1988, p. 140ff] and we can find many proposals for measures offuzziness. 
But in our opinion there are missing characterization theorems. Thus 
we want to point out how to get characterization theorems using analo­
gies with characterization theorems for (probabilistic) entropies. The 
following results can be found in [Ebanks 1983] and [Sander 1989]. 

Let us start with five well-known natural properties offuzzy entropies 
[De Luca, Termini 1972]: 

(PI) Sharpness: d(J) = 0 iff 1(0,) c {O, 1}. 
(P2) Maximum: d(J) maximum iff 1(0,) = H}. 
(P3) Sharpness Relation: Let I, g E [0,1]°. 

II 1-< g then d(J) ~ d(g). 

(P4) Symmetry: d(J) = d(1 - f) for all I E [0,1]°. 
(P5) Valuation: d(Jv g) + d(J I\g) = d(J) + d(g) for all I, g E [0,1]°. 
The relation I -< g in (P3) is defined by 

g(x) ~ I(x) lor 

g(x) ~ I(x) lor 

1 
I(x) ~ 2 

1 
I(x) ~ 2 (x En). 

It turns out that property (P5) plays a key role. 

Theorem 1 

Let 0, = {Xl, ... , xn} and let d : [0,1]° --+ IRo be a luzzy entropy. 
Then d satisfies (P5) iff there exist mappings Dn,i : [0,1] --+ IRo(1 ~ i ~ 
n) such that 

n 

d(J) = L Dn,i(J(Xi)) (3) 
i=l 
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If d(f) = In (f(xt), ... , f(x n)) is also symmetric in its variables then 
(P5) is equivalent to the existence of a generating function Dn : [0,1] -+ 

IR such that 
n 

d(f) = L Dn(f(xd), (4) 
i=1 

In the probabilistic information theory the property (4) is analogous to 
the sum form property 

n 

In(P) = In(Pl, ... , Pn) = L F(Pi), 
i=1 

with a generating function F : [0, 1] -+ IR. 
It is clear that we can characterize all fuzzy entropies satisfying (4) 

and one of the properties (Pi), 1 ~ i ~ 4. For example, d satisfies (4) 
and (PI) iff Dn(O) = Dn(I) = ° and Dn(u) > ° for all U E (0,1). 

Let us here consider fuzzy sets with the additional property P(f) = l. 
If we interpret f(x) as the probability that x E n possesses a certain 
property E, and think of the process of deciding whether Xl, X2, ... , Xn 

do or do not possess E as an experiment then (PI) goes over into the 
(probabilistic) property of decisiveness 

Dn(I, 0, ... ,0) = ... Dn(O, ... , 0,1,0, ... ,0) = Dn(O, 0, ... ,0,1) = ° 
with the regularity property In(P) > ° (where PEr n, but P is not a 
uni t vector in IRn). 

To get the explicit form of Dn,i and Dn in (3) and (4), respectively 
we consider the "natural" property 

Subadditivity : d(f x g) ~ d(f) + d(g) 

(f E [0,1]0, 9 E [0,1]0'). By introducing appropriate weight factors we 
arrive at the following two properties: 

(P6) There exist mappings s, t : IRo -+ IR such that 

d(f x g) = t[P(g)] . d(J) + s[P(f)] . d(g) 

and 
(P7) There exist mappings s, t : [0,1]-+ IRo such that 

d(J x g) = P[t(g)]. d(J) + P[s(f)]. d(g) 
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(in both properties we have f E [0,1]0, 9 E [0,1]0', where 0, Of are 
finite sets). We now consider a fuzzy entropy d as a sequence (In), so 
that (P6) and (P7) refer to families of measures of fuzziness 

{d: [0,1]0 -> IRoll 0 1< ~o}. 

Using results from the theory of functional equations the following char­
acterization theorem can be proven: 

Theorem 2 
A measure d of fuzziness (over sets 0 of all finite sizes) satisfies 

(1) (Pl),(P5) and (P6) iff 

d(f) = -c L f(x) .Inf(x), f E [0,1]0 
xEO 

where c E (0,00) and 0 . In 0 := o. 
(2) (Pl)'(P2)'(P3),(P5) and (P7) iff d(f) has the form 

d(f) = -c L f(x)a ·Inf(x), fE [0,1]0 
xEO 

where c E (0,00), a = log2 e ,0 ·lnO := 0, or 

d(f) = k . L(f(x)a - f(x)b) 
xEO 

where k E (0,00), a,b E IRo,a ~ b and a· 2-a = b· 2-b. 
(3) (Pl) to (P5) and (P7) iff 

d(f) = k· L f(x)(1 - f(x)), fE[O,I]O 
xEO 

where k E (0,00). 

The fuzzy entropy given in part (1) of Theorem 2 does not satisfy (P2) 
to (P4). Thus there is no fuzzy entropy fulfilling (PI) to (P6). But 

H(f) := d(f) + d(1 - f) = L S(f(x)) (5) 
xEO 

where d is given by part (1) of Theorem 2 satisfies (PI) to (P5) (Here 
S : [0, 1] --+ IR is the Shannon function S( u) = -u In u - (1 - u) In(1 -
u), u E [0,1]). 



270 Theory of Fuzzy Systems 

Again, let us consider in Theorem 2 fuzzy sets f with the additional 
property P(f) = 1. Then - for example - property (P6) goes over into 
the additivity (since from the proof of Theorem 2 we get that s(l) = t(l) 
= 1): 

d(f x g) = d(f) + d(g). 

Therefore part(l) of Theorem 2 is analogous to the fact that the Shannon 
entropy 

n 

Hn = - LPi log2Pi, 
i=l 

is determined by additivity, the sum form property and a regularity 
property for Hn, up to a multiplicative constant. Moreover, part (2) of 
Theorem 2 is similar to the result, that the entropies of degree (a,b) 

H (a,b) _ { Hn(P) 
n - k "n (a b) 

. wi=l Pi - Pi 

if 
if 

a=b 
aib 

(k E JR) are characterized by a generalized additivity condition, the sum 
form property and a regularity property for H~a,b). 

3 Inset entropies 

We first remember the following well-known result on inset entropies 
[ACZ(~I, Dar6czy 1978 , Aczel, Kannappan 1978]. 

Theorem 3 
Let a E JR\O and let Gn : On X r n -+ JR (n ~ 2) be an inset entropy 

n 

with 0 = U Xi· Then Gn is symmetric, 
i=l 

a-recursive, that is , 

permutation, 

Gn ( Xl,"" Xn ) = Gn - 1 ( Xl U X2, X3,· .. , Xn ) + 
PI,··· ,Pn PI + P2,P3,··· ,Pn 
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and measurable, that is, 

P E [0,1] is measurable, 

iff Gn has the form 

n 

Gn(X, P) = cH~(P) + LPfg(Xi), X E f2n, PEr n (6) 
;=1 

where 9 : B -+ 1R is an arbitrary function. Here H~(P) = Hn(P) is the 
Shannon entropy and 

n 

H~(P) = (2 1- a - 1)-1[(Lpf) - 1], a f:. 1, 
;=1 

is the entropy of degree a (with the convention oa = 0). 

We have presented this result to show that the total entropy [De Luca, 
Termini 1972] 

n 

Htot(l, P, X) = Hn(P) + LPiS(I(Xi)) 
i=1 

(P Ern, f E [0,1]11, X E f2n), which consists of a random term and 
a fuzzy term, has exactly the form of the above inset entropies (if a. = 
l)with 9 = So f (We have used the above notations). Thus we can 
characterize Htot (I, P, X) using Theorem 3.1. and the results of chapter 
2 (If, in partcular, P = (lin, ... , lin) then we have 

Htot(l,P,X) -logn = lin· H(I)). 

On the other hand the result in Theorem 3 gives us a total entropy for 
a f:. 1 which is analogous to H tot . This means that we can present a 
"natural" one-parametric generalization of Htot by putting 9 = So fin 
equation (6). 
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4 Concluding Remarks 

In this note we wanted to point out the advantage of characterization the­
orems for fuzzy entropies and total entropies for applications: An user 
can choose an appropriate fuzzy entropy knowing some natural proper­
ties of the apriori unknown fuzzy entropy. 

Because there exist far reaching generalizations of Theorem 3 [see 
the survey paper of Sander 1987], it is possible to introduce extensive 
classes of total entropies which cover also recent results in the theory of 
evidence. We come back to these results in another paper. 
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Fuzzy Classification 



6.1. Fuzzy Classification: An Overview 

Klaus Dieter Meyer Gramann 

Abstract 

Fuzzy classification, fuzzy diagnosis, and fuzzy data 
analysis are - besides fuzzy control - the most 
important application areas of fuzzy logic. In this 
chapter four practical tasks are presented which can 
roughly be characterized as technical classification 
and diagnosis, fuzzy data analysis in chemical model 
creation, medical object recognition, and decision 
making support by a life insurance. Neural networks 
and analytical methods of classical statistics tIy to 
find explicitely a classifying function with the help of 
a sample. The development of knowledge-based 
systems has stimulated modern constructive 
approaches like IF-THEN-rules and causal networks. 
In order to deal with vague observations, vague 
relationships between features, and/ or non-crip 
classification, these analytical and constructive 
methods were transfered from crisp numbers to fuzzy 
sets. The contributions of fuzzy sets to the four 
applications of this chapter are presented. Some 
general remarks on the applicability and limitations 
of fuzzy classification conclude this short 
introduction to fuzzy classification. 

1 Introduction 

277 

"Fuzzy logic" has become one buzzword of the nineties. Some 
technical devices with the label "fuzzy" were economically 
successful, especially in Japan, and are often mentioned in the 
fuzzy literature: traffic systems, electrical and electronica1 
consumer appliances, automatization systems, components of 
automobiles, etc. Nearly all of these fuzzy applications can be 
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called fuzzy controllers: The task is to control a closed loop 
automatically such that specific requirements (the control gains) 
are fulfilled. A chapter of this book is devoted to "some trends in 
fuzzy control", for a survey of fuzzy control cf. [DHR93], e. g. But 
control is not the only application area of fuzzy logic! This 
chapter deals with fuzzy applications which do not come under 
the category fuzzy control. The common framework of the four 
applications is that only vague observations are available for 
solving the specific task and that the vagueness is represented 
by fuzzy sets. But in contrast to fuzzy control no closed loop is to 
be controlled, i. e. no data flow automatically from the fuzzy 
system to the "object" under consideration. The "output" of the 
fuzzy system is shown to a human user or given to a monitoring 
device, e. g. 

In the sequel the four specific tasks being presented in this 
chapter are sketched: 

o In [8B94] a general approach for classification is 
presented. An expert has defined several classes for a 
specific domain. The object is characterized by a crisp 
feature vector, the classification yields a membership 
vector. Quality inspection, monitoring, technical diagnosis, 
and medical image processing are mentioned as 
application examples. 

o A chemical compound consisting of different molecules is 
described in [Ku94] by a model which has four unknown 
force constants. The constants can not be determined 
exactly but one knows that they are members of intervals 
11, 12, 13, and 14, resp. Therefore one wants to value each 
possible combination of constants with a number out of 
the interval [0,1]. One can measure the constants only 
indirectly by evaluating the three fundamental vibrations 
of the oscillating molecule. The fundamental vibrations are 
a known function F of the unknown constants. 

o One wants to classify a medical "object", namely an organ, 
in [KJ94]. An image of the real object is compared with 
reference images. The object's image as well as the 
reference images are represented as so-called "wireframe 
models". Each wireframe model is characterized by a finite 
set of typical points. The result of the classification is a 
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membership vector. In order to classifiy the object a spatial 
transformation of the object's pictllre is to be performed. 

o In [Wi94] a life insurance wants to decide on an 
application. Possible alternatives are complete acceptance, 
complete refusal and partial acceptance (only a part of the 
risks are insured, shorter run-time, e. g.). The decision 
maker is supported by a collection of n reference 
applications already decided. The task is to compare the 
application with the reference applications in order to find 
out its benefits and drawbacks for the insurance. 

2 Classification and Cluster Analysis 

All of these tasks can roughly be labeled as classification 
problems. Related notions are diagnosis (the "object" is a 
technical device or process or an ill human being, the aim of the 
classification procedure is to find a suitable repair action or a 
therapy, and one wants to obtain an explanation for the 
diagnostic result) and decision making support (one has to make 
an economical, espec. management, decision and typically has to 
consider several objective criteria). 

We introduce the classification problem formally: Let an 
object 0 be given. 0 is characterized by a t-dimensional feature 
vector ~ of a universe of discourse U. Often U is the space Rt. A 
set C 1, ... , Co of classes is given a priori or has to be discovered. 
The task is to calculate a membership vector m 1, ... , IDn for the 
object O. The number IDi E [0,1] is the degree of membership of 0 
to Ci. With other words: Each class Ci is characterized by a fuzzy 
set IJi of the feature space U, the value IDi = 1Ji~) is to be 
calculated. Ideally IDi = 1 for exactly one i E {1, ... ,n} and IDj = ° for 
all other i holds. 

In a lot of practical applications this optimal result can not be 
derived as one can not observe exactly the features of the object 
o and/ or can not draw a unique conclusion from the features to 
one class even in the case of a crisp feature vector. If one can 
only observe a vague feature vector, it is a common approach to 
represent each observation as a fuzzy set which includes crisp 
and interval-valued observations. 
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This approach differs basically from that of classical statistics: 
Statistics considers random mechanisms. Its outcomes can not 
be predicted due to random influences but can be observed and 
measured exactly. Fuzzy sets, however, are a tool to handle 
imprecise measurements. 

Often an expert determines the classes C 1, ... , Cn which are 
to be distinguished. If this is not possible, one can try to obtain 
the classes with the help of a cluster analysis automatically. N 
objects 01, ... , ON are given. The task of a cluster analysis is to 
find a partition into different classes, called "clusters". Surveys 
on cluster analysis are [D074] and [MKB79], e. g. Approaches of 
the classical cluster analysis require crisp feature vectors and a 
metric on the feature space. An example for a clustering method 
is the ISODATA algorithm [D074]. The distance d(j,k) between 
the objects OJ and ~ is given. The algorithm iteratively 
determines a crisp partition into clusters. It finishes if the 
distance between two clusters always exceeds a given threshold. 

Often a crisp partition yielded by a classical method does not 
allow a practically useful interpretation. In this case one utilizes 
the more general notion of a fuzzy partition: The degree of 
membership of object OJ to class Ci is a number ~(j) & [0, l]. One 
demands for each object OJ that m 1 m + ... + mom equals 1 and 
that each class Ci has at least one "fuzzy member", i. e. there 
exists an object OJ with a membership degree ~(j) greater than 
0. In order to generate a fuzzy partition for a given set of crisp 
data one has to define an objective function, a so-called 
clustering criterion, which values a fuzzy partition. In [Be8l], 
[BH93], and [BN92] fuzzy partitioning algorithms are presented. 

If the feature values are no real numbers but fuzzy sets, one 
additionally needs a metric on fuzzy sets. Fuzzy partitioning 
algorithms can generalized to fuzzy set valued features also, cf. 
[BN92]. 

As mentioned above, the basic classification task is to classify 
an object O. A set of n classes { Cl' ... , Cn} are determined by 
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an expert or automatically by a cluster analysis. The task is to 
find a membership vector (m 1, ... , Inn). 

The classical analytical approach tries to find explicitely a 
function f: U --> { Cl' ... , Cn } or more general f: U --> [O,l]n 
mapping a feature vector to a membership vector. A sample of N 
classified objects is given. The function f is optimized with 
respect to a suitable criterion. Often the error square sum serves 
as mjnimjzation criterion. Basic solutions of this tasks are the 
classical regression analysis, polynom classification [Sch77] and 
neural networks, cf. for example [K092] and [KNN93]. 

The development of knowledge-based systems has stimulated 
constructive approaches to solve the classification task. A 
common solution is to formulate IF - THEN - rules (cf. [Su91], 
e. g.), sometimes denoted by the misleading term "production 
rules". Such a rule represents a chunk of application-specific 
classification knowledge. The premise of a rule is a combination 
of statements on object features. The premise is a statement on 
the class the object belongs to. Such rules can be weighted with 
the help of certainty factors as known from the medical 
diagnostic expert system MYCIN, see [BS84] and [He86]. A usual 
interpretation of a certainty factor CF is a probabilistic one: CF is 
a measure of the relative change in the certainty of the rule 
conclusion which is yielded by knowing that the premise is 
fulfilled. Different certainty factor calculi are presented in the 
literature [Su91] but for real-world applications each of them 
leads to inconsistent, unpredictable, and counterintuitive 
results [He86]. 

IF-THEN-rules are the most usual ~ to organize knowledge 
for a heuristic classification [CI85]. An other approach is that of 
the covering classification [PR90]. One tries to find a class (or a 
set of classes) which covers the obtaines observations best. 
Examples for optimization criteria are that of minimization, 
relevance, and that of highest probability [PR90]. The covering 
classification is derived in the context of knowledge-based 
diagnostics. 
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Other algorithms automatically yield a classification decision 
tree or a rule set from an example set of classified examples. A 
survey on algorithms for the construction of classifying decision 
trees is given in [SL91]. Some approaches utilizes results of 
information theory. A well-known example is the ID3 
classification algorithm [Qu79]. 

An other modern approach of building a classification tool is 
to construct a causal network [Su91]. A node represents a 
proposition, that is a "piece of knowledge" about the object 
under consideration. An edge points from a cause to an effect 
and stands for a causal link between two statements. In the 
presence of uncertain data one often deals with probabilistic 
causal networks, also called belief networks, where the edges are 
labeled with weights. In Bayesian belief networks these weights 
have the interpretation of conditional probabilities. A-priori­
probabilities are assigned to the nodes. Belief networks are more 
flexible than classical causal networks as they can be evaluated 
in all directions and allow local computations in order to obtain 
missing data Bayesian belief networks are treated by [Pe86], 
[Pe88], [AOJ89], [SS90]. 

3 Fuzzy Classification and Fuzzy Data 
Analysis 

Several approaches just sketched were generalized to fuzzy 
set valued data and/ or for an imprecise classification. 

A method to find explicitely a function f : U --> [O,l]n is 
described in [BB94]. Each class is represented by a fuzzy set. 
The function is described as a superposition of these fuzzy sets. 
The observations are crisp feature vectors. 

An other way of solving a classification task is to apply a 
regression analysis method. A variable Y depends on an other 
variable X, it holds y = f(x,c) with a known functrion f and an 
unknown parameter c out of a universe of discourse C. In order 
to estimate the parameter one draws a sample of size N. If one 
can measure the values of X and Y only imprecisely, one can 
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consider the sample as a collection of N fuzzy sets Ill, , IlN 
each with the universe of discourse X x Y. The main goal is to 
calculate a fuzzy set Ilc for the unknown parameter c with C as 
its universe of discourse. If needed, one defuzzifies this fuzzy set 
Ilc' According to [BN92] one solves this task in two steps: In the 
first step the N fuzzy sets are aggregated to one fuzzy set IlAGG 
on X x Y. The second step is to "extract" Ilc from IlAGG' 
Suggestions how to perform these steps are given in [BN92], 
[Ce87], and [Ku90). A generalized approach considers not only 
the observations but also the unknown relationship between X 
and Y itself as a fuzzy relation. This fuzzy relation is 
characterized by a membership function on X x Y depending on 
an unknown parameter c. In [BN92] and [Di88] it is shown how 
to derive a fuzzy set for c given a sample of N fuzzy sets. Linear 
regression analysis with a fuzzy sample is treated in [NA90]. 

In order to illustrate fuzzy data analysis a practical example 
stemming from [BN92] will be presented in the following. In 
mining sciences, e. g., one wants to characterize the two­
dimensional shape of a three-dimensional particle. The shape is 
compared with a family of geometric figures, e. g. with 
generalized ellipses 

E(c,d,p)={ Ix/cIP+ ly/dIP= 1 I xERandYER}. 
The task is to find a degree of coincidence for each figure, i. e. for 
each tritel (c,d,p) a value Il(c,d,p) E [0,1]. One obtains a fuzzy set 
Ilof~ . 

The projection of the particle on a plane surface yields a grey­
tone picture. The degree of correspondence between this picture 
and the figure E(c,d,p) is taken as the value Il(c,d,p). The grey­
tone values are mapped to the interval bO,l]. The "fuzzy edge" of 
the picture is a fuzzy set IlE on R defined by IlE(x,y) = 
2 * min {G(x,y), I-G(x,y)} where G(x,y) is the normalized grey-tone 
value at the point (x,y). Il(c,d,p) is calculated as the medium 
value of IlE on the curve E(c,d,p) obtained by numerical 
integration. 

The task of classical empirical statistics is to estimate the 
unknown parameters of a random mechanism with the help of a 
random sample of size N. This task is also transfered to fuzzy 
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data: If the observations are imprecise, one can consider them as 
N fuzzy sets being the realizations of a fuzzy set valued random 
mechanism. In [KM87) and [Vi90). It is shown how a fuzzy set for 
the unknown parameters can be calculated by applying 
statistical methods on a fuzzy set instead of a crisp sample. 

Let us tum to some fuzzy versions of the const::ructive, 
knowledge-based approach of classification. The well-known 
concept of a lingustic rule generalizes that of a conventional IF­
THEN-rule. The statements in the premise are linguistic instead 
of crisp statements on an object's features. The conclusion is a 
crisp or linguistic statement on a membership to a class. The 
linguistic rule can be weighted by a factor. An example for such 
a rule is: IF to feature_l of 0 is 'big' to AND to feature_2 of 0 is 
'small' THEN to 0 belongs to class C2" with security 0.7. 

A fuzzy classificator performs a run-time evaluation of the 
linguistic rule set as being known from fuzzy control. If a 
membership vector (ml' ... , IDol is a sufficient output, a 
defuzzification is omitted. Such a fuzzy c1assificator can utilize 
crisp numbers as well as fuzzy sets as input values. 

Two practical applications out of the huge number of fuzzy 
classificators are sketched. The task in [SG93) is to classify 
crates; the two classes are "own crate" and "other crate". The 
classification feature is the printed label of the producer. An 
other example is given in [We93] and [WPG93J: An automatic 
transmission adapts automatically to the driver's wishes and his 
way of driving. The driver as well as the environment conditions 
are to be classified, and dangerous changings of gears must be 
prevented. The classificator works as a preprocessor of a 
controller. Seven input and three output variables (driver class, 
environment class, dangerous situations) were identified, and 
the fuzzy classificator was implemented in the car environment. 

4 Fuzzy-Neural Classification 

Different approaches are suggested in order to combine the 
advantages of linguistic rules and that of neural networks. Some 
basic approaches are sketched in the following. The reader is 
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refered to the chapter "some trends in fuzzy control" of this book 
as well as to [K092] and [KNN93]. 

The first way of combination is just that the neural network 
serves as a preprocessor for the fuzzy system. Such a 
preprocessor may be necessary if the feature space is high­
dimensional. A stand-alone fuzzy classifier can not be created as 
the fuzzy system had too much input values or input values 
without an intuitive semantics. Therefore the neural network 
calculates the values of intuitive features and reduces and 
compresses by this the observed data set by abstraction. The 
output values of the neural network are the input values of the 
fuzzy system. Based on this approach a hybrid color correction 
system for HDTVs was constructed [CT93). 

1n [HFU92) a way is descn"bed just to implement a fuzzy 
controller / classifier of the Sugeno type as a neural network. 

The next three approaches utilize a fuzzy-neural combination 
during the training phase. One way is helpful if the sample does 
not cover all possible situations. One creates a fuzzy classificator 
applying linguistic rules. One defines a set of feature vectors not 
being covered by the sample and let the classificator calculate 
the corresponding membership vectors. These assignments are 
added to the sample, and a neural net is adapted to the entire 
example set. 

When creating a fuzzy controller / classifier one has to assign 
values to a lot of parameters: the shape and parameters of the 
membership functions, weight factors, sometimes also 
parameters for the inference method, etc. The idea is that a 
neural network determines some of these parameters 
automatically and shortens the engineering phase by this. One 
way is utilized for example by NeuralGen, a software tool ofTogai 
Infralogic: The user defines the classes, the objects' features, 
linguistic statements on them, and the membership functions. 
Each conclusion of a combination of statements to a class forms 
a possible linguistic rule. The task is to filter out the relevant 
rules. This is done by a neural network with a suitable 
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architecture calculating the weight factor of each possible 
linguistic rule. 

An other way was suggested by [Ja92] for fuzzy controller / 
claS$llier of the Sugeno type and applied in [BZ94], e. g. The 
parameters of the membership functions (in [Ja92] only 
Gaussian functions are used) are the only degrees of freedom. 
They are automatically determined by a suitable neural network 
called ANFIS (Adaptive Neural Fuzzy Inference System). One 
estimates roughly these parameters a priori, the neural network 
adapts them to the given sample. 

A fuzzy system interferes the parameters of a neural network 
during its learning phase in order to accelerate its convergence 
or to avoid an unwelcome interference of already learned trainig 
sets by new examples. Typically only few linguistic rules are 
needed. A simple example for this strategy: The fuzzy system 
updates the learning rate T\ of the backpropagation algorithm. 
This appoach and more complex updating methods are 
presented in [ACM92] and [HMG94] in the context of fuzzy 
control. Often these methods turn out to be just "fuzzy 
formulations" of classical, non-fuzzy procedures. A survey on 
numerical methods of training acceleration is given in [CU93]. 

5 Four Fuzzy Classification Applications 

In the introduction the four fuzzy application tasks were 
sketched. In the following it is pointed out what fuzzy sets 
contribute to the specific solutions and how the authors 
motivate the utilization of fuzzy sets and fuzzy logic. 

The approach of [BB94] is that each class is represented by a 
fuzzy set with the feature space as its universe of discourse. 
Each membership function is a so-called "Aizerman's potential 
function", the classes differ by the parameters of their 
membership functions. These parameters either stem directly 
from a human expert or are evaluated with the help of a sample 
of classified objects utilizing an optimization method. Let!!: be 
the object's feature vector and J.li be the membership function of 
class Ci. The membership degree IDi of the object is just J.ligg. 
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The method presented in [BB94] competes with methods of 
the classical statistics, with neural networks, and with expert 
systems. As an advantage it is stated that an available set of 
examples can be used as well as the expert's experience. Both 
sources of knowledge are integrated into the same classificator. 
The membership functions for the classes illustrate the work of 
the classificator clearly which is an advantage against weight 
factors of a neural network. The approach does not require that a 
specific model is selected or created. The procedure can be 
applied well even in a high-dimensional feature space. 

According to [Ku94] the fundamental vibrations of an 
oscil1ating molecule can only be determined approximately. A 
crisp number pretends a precision which in reality is not 
available. An interval has two strict borders. Therefore an expert 
determines a fuzzy set for each fundamental vibration of a 
molecule with the help of his experience. Only membership 
functions with a trapezoidal shape are defined. Let J.1 be the 
common fuzzy set for the three fundamental vibrations. Let F : 11 
x 12 x 13 x 14 --> R3 describe the relationship between the force 
constants and the fundamental vibrations. Then the weight of a 
combination ~ ell x 12 x 13 x 14 is J.1[Fgg]. The presented 
procedure yields a weight factor for each possible combination of 
force constants being a number out of the interval [0,1]. The 
result is a fuzzy set with 11 x 12 x 13 x 14 as its universe of 
discourse which describes a fuzzy relation between the four force 
constants. 

Each characteristic point of a wireframe model presented in 
[KJ94] is characterized by an own fuzzy set on the space R3 
which takes the value 1 for exactly one tripeL An expert defines 
three fuzzy sets on the X-, the y-, and the z-axis, resp. 
Automatically a common fuzzy set on R3 is calculated. A metric 
on fuzzy sets is introduced in order to determine the distance 
between two wireframe models. 

A wireframe model with a finite set of characteristic points is 
only an approximation of an object's picture. Because of this the 
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authors state that it is adequate to represent a point as a fuzzy 
set. 

In [Wi94] the relevant features of the applicant as well as the 
criteria for evaluating the application are modelled as linguistic 
variables each having a set of linguistic values as its domain. An 
expert defines the membership functions and formulates 
linguistic rules for the inference from the applicant features to 
the criteria 

In order to compare the application with the reference 
applications, one needs a value (a number out of [0,1]) for each 
of the following statements: 

o The application p is as good as the application q with 
respect to criterion j. 

o The application p is incompensable worse than the 
application q with respect to criterion j. 

These values are calculated automatically. For this task the 
fuzzy sets for the linguistic statements are needed as well as two 
additional fuzzy sets which are defined by an expert quantifying 
his concept of "as good as" and "incompensable worse", resp. The 
evaluations are aggregated to a single matrix, called the 
prevalence matrix, which shows a ranking among the (n+ 1) 
applications under consideration. 

The criteria which the decision maker must take into 
consideration typically are fulfilled partly. Therefore they are 
modelled as linguistic variables. Different criteria can contradict. 
TIlls conflict of goals can be handled with the help of an 
outranking procedure. The imprecise knowledge can be 
integrated smoothly into the procedure when described by fuzzy 
sets. 

An alternative solution is to create an expert system with 
conventional or linguistic rules or to construct a decision tree. 
But defining the rule set seems to be time-consuming. In 
addition, IF-THEN-rules hardly can formalize the pairwise 
ranking amongst the applications according to different criteria 
The task was to support a human decision maker, not to replace 
him. 
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6 Conclusion 

The four applications show that a good understanding of the 
underlaying problem is needed. To construct the presented and 
comparable c1assificators requires to know the relevant features 
for the specific applications. One must be able to quantify each 
feature at least approximately. One must know the classes to be 
distinguished and must be able to characterize them at least 
roughly. To acquire and formalize this application-specific 
knowledge always takes a lot of time. This is demonstrated 
clearly by the experiences in constructing expert systems. The 
knowledge acquisition process is known as the ''bottle-neck''. 
The experts are always in demand. In addition, the decision 
making knowledge sometimes must not be disclosed. The 
available example set often does not cover all situations or has 
not the structure to be utilized directly. 

If the needed knowledge or examples can not be obtained, 
neither a fuzzy method nor a competing approach will yield a 
sufficient result. If one is sure to get this knowledge, the next 
step is to decide what task the classificator has to fulfill. The 
range of possible answers covers a fully automatical service 
[BB94] as well as a pure support for a human decision maker 
[Wi94]. The specific answer determines how reliable and precise 
the utilized examples and available observations must be and 
what decisions the tool has to make: for example a ranking 
amongst the alternatives or a reliable crisp decision. 

After having answered this question one has to select an 
approach out of competing methods, one alternative can be a 
fuzzy approach. Typically a decision for "fuzzy" does not imply 
that the complete task is solved by a fuzzy approach - in general 
a fuzzy solution will perform only a partial task and will 
cooperate with other methods. Often one has to integrate 
conventional methods for acqUlIlllg and processing 
measurements and/ or interpreting the results. This 
demonstrates the four applications of this chapter. 

Typically one only needs a small part of the large-sized theory 
of fuzzy sets, fuzzy logic, and approximate reasoning. From my 
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point of view the four articles show this, this observation 
coincide with that made in (Kr93], e. g. The quality of the results 
seems not to depend on the precise shape of the membership 
functions or on the choice of the connecting operators - it is only 
important to select "sensitive" membership functions and 
operators. Often one will select alternatives which are easy to 
handle. 

My conclusion is to recommend these steps: If one has a 
classification, decision making, or control task: which has no 
straightforward solution, one transfers the requirements 
mentioned above to the own application and check if they are 
fulfilled. If they do, one compares fuzzy techniques with 
competing approaches. One has to take into consideration that 
the validation and the tuning of the solution requires a lot of 
time. It is always sensitive to define a stopping criterion (budget 
is spent, time is run-off, a quality criterion is fulfilled). It can 
save a lot of time to adapt a solution for a similar problem 
already described in the literature. All the way: the proof of the 
pudding is in the eating! 

Hopefully this book helps its readers in finding an approach 
which supports them to solve their control, classification, or 
decision making task! 
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It is always impressive to watch an experienced specialist master diffi­
cult and complex situations. The real problems are very different but 
the characteristics of the action are similar: acquiring a flood of informa­
tion, concentrating on the essential, evaluating and reaching a purpuse­
ful decision. The expert often cant explain his decision making process. 
Doubtlessly, his knowledge and experiences about the functional con­
nections are very important. However his ability to compare the present 
situation with typical examples leads to a strategy in a more effective 
way. This intellectual process means an immense reduction from a lot 
of information to a few pattern. 

The principles of classification can be used to automate this thinking 
manner. Corresponding to the real experiences, the vagueness and un­
certainty are awarely noticed and used for adequate modeling. Methods 
based on fuzzy set theory assume suitably for describing and process­
ing inexact information and vague knowledge in a mathematical sense. 
Problems in decision making and control which are difficult or impos­
sible to access by theoretical analysis appear solvable. Knowledge and 
experiment based methods complete the process modeling successfully. 

2 Methodology of Fuzzy Pattern Classifi­
cation 

The research in the field of fuzzy technologies in Chemnitz already 
started in the early seventies [Peschel, Bocklisch 1977]. The principles of 
classification had been combined with the main ideas of fuzzy set theory. 
The" Fuzzy Pattern Classification" based on a pattern concept was cre­
ated [Bocklisch 1987] and has opened a qualitative new way of process 
modeling. 
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The classification model is represented by a set of classes made 
of fuzzy subsets of an information space. This space can be high­
dimensional and is defined by features, i. e., by process information 
which can probably lead to the classification. Such features can be di­
rect measurements or derived values resulting from signal processing. In 
this case vagueness appears as measuring fault or process disturbance. 
In a similar way, indirect measuring causes further uncertainties. More­
over, verbal description with all its subject and linguistic indefiniteness 
can be regarded as features. 

All defined classes have their own meaning. So quality, fault or con­
trol classes are likely. The expert defines they depend on the goal of 
classification. A class consists of similar objects identified with its cor­
responding feature vectors of parameters. Despite these parameters, the 
global rate of process situation can be inserted into the structure build­
ing. For example, already known process states, acoustical and visual 
perceptions or the actual process conditions and settings include a lot 
of additional information. The expert can interpret the classes, so he 
can connect them with certain actions, i. e. quality ratings or control 
strategies. 

According to the fuzzy set theory, each class is defined by a subset 
of membership functions within the information space. A concept of 
parametric functions was uniformly chosen taking the general Aizerman 
potential function as basis. In the one-dimensional case, this function 
has the following form: 

The function is unimodal and can be adapted to the given actual 
problem by tuning the parameters s, c, band d, which can be defined 
as: 
s ... the gravity point of the class for degree of membership 1, 
c ... the boundary of the class, 
b ... the membership on the class boundary, i.e. Jl(s + c) = Jl(s - c) = b 
d ... the shape parameter for decrease in membership with increasing 
distance from s. 

To increase the flexibility of adaptation this representation can be 
generalized by distinguishing a right and a left wing of the function 
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connected at s. In this way, even unsymmetrical parameters (different 
for the right and left wing) can be taken into account. The aggrega­
tion operation for the one-dimensional membership function is basically 
a disjunction one. The n-dimensional relation follows the parametrical 
concept: 

In this form, the term is very simple. It does not represent the proper 
vector processing. However, this aspect enables regarding and modeling 
the dependencies between several features. Only this possibility ensures 
the increased efficiency of this classification model. 

3 The classifier design 

Each object is described by a feature vector. To conclude from a set of 
measurements (training data) to a global class description, a learning 
period is necessary. Generally the classifier design contains the following 
steps: 

An exhaustive process analysis in close cooperation with specialists 
has to be at the beginning. Hence the problem and the classification 
object must be specified. The goal determines the classes and the fea­
tures with the appropriate measured values. The selection can be sup­
ported by analytical process knowledge. Also, the imitation of human 
actions can be useful to the problem solving. Repeatedly, the practical 
experiences and the theoretical information complete each other advan­
tageously. Subsequent to these decisions, the technical conditions for 
measuring have to be realized and the active or passive experiments 
have to be planed. 

The choice of the features influences the efficiency of the classifica­
tion model considerably. Conventional methods or particular algorithms 
of data signal processing find broad use. During the experiments, the 
training data will be recorded and the feature vector will be computed. 

The collected learning objects are assigned to the predefined classes. 
In completion of the "learning by teaching" procedure, mathematical 
clustering techniques can be used.The membership function of the vari-
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ous classes based on the parameters of the associate learning objects will 
be computed. For this purpose the feature data of objects which belong 
together can be processed by the comfortable software" FUCS - Fuzzy 
Classification System" [Bocklisch et al. 1992a). 

The learning phase is completed with tests and simulations to verify 
the efficiency of the classification model. For that reason the reclassifica­
tion rate is regarded as an important criterion. It specifies the percentage 
of correct classified learning objects. However, other quality criteria are 
possible to characterize certain performances of the classification model. 

4 The classifier optimization 

During the learning phase, the classifier design can be influenced in var­
ious manners. The selected classes and the determined structure are 
of crucial importance. Due to the well-known parameters of the mem­
bership functions, subjective manipulation can modify the classification 
model purposefully now. Such interventions in the design can be nec­
essary in the case that some classes are not sufficiently represented by 
learning objects or if suitable experiments are not applicable. Especially 
for modeling classes, such as disturbances, technological limits or alarm 
situations, it seems to be necessary and possible to pay attention to rule­
based knowledge. 

Which features have to be used should be evaluated carefully. Surely 
they contribute to the classification differently. That's why it is interest­
ing to find out the significant features. The objective justified reduction 
of feature numbers [Priber 1989) cuts the expense of an classification 
process. So the computing time decreases directly. However real costs 
can also be cut down by renouncing some sensors and measuring tech­
lllques. 

Finally the best suitable classification model is chosen from several 
alternative designs. 

5 The usage of the classifier 

The whole knowledge derived from experiences and experiments is com­
pressed into parameters of the fuzzy classifier. Now it is used to classify 
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an unknown object represented by its feature vector. All classes respond 
to a certain extent. So to speak, they "fire" corresponding to the com­
puted degree of membership to each class. The exact results of the degree 
of membership of all classes are combined in the so-called sympathy vec­
tor. So, the identification leads from the high-dimensional feature vector 
to the low-dimensional and interpretable sympathy vector. 

The fuzzy consideration does not only bring out the degree of mem­
bership to classes but also the risk of this decision: 
- If the degree of membership is obviously higher to one of the classes 
than to other ones, the decision is quite risk-free. 
- The membership to a class is uncertain when two (or more) degrees 
are high without quantitative differences. 
- If the degree of membership to none of the classes is high enough or 
does not exceed a fixed identification boundary, the membership to one 
of the classes is not likely. The object is turned out. 

6 Applications 

The methodology of fuzzy pattern classification is very general. Thus, it 
is applicable in a wide range of applications, like process identification, 
modeling or decision making. In 1985 the efficiency of the procedure was 
already proved successful in practice. 
- In technical field: Monitoring of wear fault of conveyor belt rolls for 
the predicted maintenance [Bocklisch et al. 1989]. 
- In medical field: Interpretation of radiographs for the diagnosis with re­
spect to early stages of carcinoma of the mammary gland [Schuler 1993]. 

These applications exhibit a certain similarity: Before using fuzzy 
classification based methods extensive experiences are necessary to com­
pare the noise or pictures by subjective acoustical or visual perception 
respecti vely. 

In the field of quality inspection and assurance, numerous projects 
verified the procedure, too. The following list remains, however, incom­
pletely: 
- Based on vibroacoustical analysis, the tool sharpness (drilling and 
milling cutter) was determined on-line in flexible production. Because of 
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technological measuring restrictions, only indirect diagnosis signals were 
available [Bocklisch et. al. 1992b]. 
- The wear fault of rolling disks was observed to early detect cracks by 
monitoring vibration signals [Hanel, Luft 1991]. 
- The robot MAG welding quality of robot welding technique was assured 
by analyzing electrical current and voltage curves [Burmeister 1992]. 
- Defining the quality of refrigerators by investigating the time series 
during the start phases of the cooling process [Bocklisch, Lorenz 1990]. 
- Noise estimation for quality defining [Bitterlich, Totzauer 1992]. 
- Quality inspection of polished surfaces with methods of image process-
ing [Priber 1991]. 

Other fields of application are: 
- the exploitative data analysis, 
- the pattern recognition in general image domain (analysis of images, 
time series or frequencies), 
- the technical and non-technical diagnosis, or 
- a class-based control. 

Though, the design strategy and the application conditions are gen­
erally applicable, the attention can be directed to different parts. Some 
examples explain this fact: The data analysis requires an intelligent data 
preprocessing. The numbers of data increase in multi-sensor systems. 
Time series must be analyzed in real time. The system complexity in 
technical or ecological monitoring increases. That all requires new per­
formance of both software and hardware [Bocklisch, Muller et. al. 1992]. 
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6.3. A Fuzzy Method to Spectra 
Interpretation 

Matthias Kudra 

Abstract 

The purpose of this paper is to introduce another application of 
fuzzy set theory on the field of spectra simulation. Spectra are 
characterized by a lot of bands. Simulation means to forecast the 
frequency positions of the bands. To do this, the geometry of the 
molecule and so-called force constants, reflecting intermoleculare 
bonds, have to be known. HO'Wever, the numerical values of the 
force constants are known only aprroximately and partially in 
most cases. Since the application of iteration methods like least 
square methods to determine molecu1are force fields is bounded. 
'We will propose an alternative way. Starting from a fuzzy 
interpretation of uncertainty, 'We develop a completation of the 
traditional method to the calculation of vibrational frequencies: 
the Normal Coordinate Analysis (NCA) The method will be 
demonstrated and discussed on the example of 3- atomic 
molecules like water H20, hydrogensulfid H2S and hydrogen­
selenium H2Se. 
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1 Vibrational Spectra and Normal Coordinate 
Analysis 

In chemistry, the spectroscopy is an very important method to investigate 
combine and bond behaviour of moleculare systems. The spectral bands, 
resulted by infrared or RAMAN measurements, mark such frequencies of the 
light absorbed by the molecule to the activation of vibrations. They are 
characterized by two parameters: band position and intensity. With the help of 
calculation methods 'We are able to assign the vibrations of atomic groups to 
special bands in the spectra The Normal Coordinate Analysis (NCA) is such 
an important method to calculate the band positions of so- called fundamental 
or normal vibrations. As a rule the fundamental vibrations have the highest 
intensity in the spectra The NCA starts from a mechanical point of view and 
model the atoms as point masses and the bonds by assuming of spring forces. 
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As a result we get the eigenfrequencies and eigenvectors of the fundamental 
vibrations. With the help of the eigenvectors we can assign the 
eigenfrequencies to the experimental measured frequencies of the fundamental 
vibrations. To the calculation of the eigenfrequencies we need geometry 
parameters (bond distances and angles), the atomic masses and especially so­
called force constants reflecting the strength of the various bonds and 
interactions between them. An overview about NCA is given by [McIntosh, 
Michaelian 1979], computer programs are developed by [Jones 1976]. 

[Nibler, Pimentel 1968] discuss the special problem of the 3- atomic molecules 
H20, H2S and H2Se. The geometry of these molecules is given by the atomic 
distance r: H-O, H-S, H-Se, resp., and the angle d between the atoms. The 
interactions between the atoms are described by 4 force constants: Fr, Frr, Frd 
and Fd. The force constants Frr and Frd stand for the couplings between Fr 
and Fd, describing stretches and angle bending, resp .. Hence, we get the 
following 3 normal vibrations illustrated in figure 1: symmetric (1) and 
asymmetric (2) stretch and angle bending (3). 

H(O) H(O) 

O,S,Se 

For H20 it holds: 

r = 0.958 A 

d = 104.45° 

Figure 1: Normal vibrations of the 3-
atomic molecules 

However, in many cases we have only vage informations about the numerical 
values of the NCA input parameters. Especially, this comes true for the force 
constants. Frequently, they are known only approximately and partially. Even 
in the case of the 3- atomic molecules the force field it is not known without 
any doubt. The geometry parameters are approximate values too, because in 
reality no molecule is in steady position. However, the uncertainty of the 
geometry can be neglected according to the uncertainty of the force constants, 
because from special measurements (X-ray investigations) the geometry 
parameters are known with sufficent precision. ' 

To get an optimal aggreement between the model (NCA) and the reality 
(spectra), frequently an iterative improvement of the force field is necessary. 
Additionally, the iteration needs the observed experimental frequencies of the 
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fundamental vibrations. However, the experimental values are uncertain 
quantities, too. Sometimes we can only determine frequency intervals expecting 
the normal vibrations. Furthermore, because of the overlapping of vibrations 
and the appearence of combination vibrations, we cannot give an unique 
assignment of experimental frequencies to normal vibrations. Especially this 
comes true for complex moleculare structures like zeolites. Furthermore, to 
carry out an iterative improvement of force constants by classical least sqares 
methods (LSE), all experimental frequencies have to known exactly. The LSE 
use the euclidic distance measure between calculated and observed frequencies 
as an evaluation measure of force fields. Furthermore, the LSE assume that the 
number of force constants is smaller than the number of experimental 
frequencies. However, this assumption is failed for 3- atomic molecules, where 
we have 4 force constants and 3 observed experimental frequencies. Hence, to 
circumvent this fact, we can :fix some force constants or we can include 
additionally quantities like experimental frequencies of isotope molecules. 
Mentioned that for isotope molecules some H- atoms are substituted by D­
atoms. In the light of NCA, the only distinguish between the origin molecules 
and its isotopes lies in the mass of the D- atom, because in following of the 
Bom- Oppenheiner- Theory the same force field can be used for all isotopes. 
However, since the experimental frequencies of isotope molecules are more 
uncertain, the isotope method has its boundaries, too. 

Hence, we will propose an alternative method removing LSE drawbacks. We 
start from a quite different point of view and model theoretical as well as 
experimental uncertainty by fuzzy sets and subtitute the euclidic distance 
measure by a fuzzy measure. 

2 Fuzzy observations of the experimental 
frequencies and force constant intervals 

In the case of the 3- atomic molecules we are able to fix the band positions of 
the fundamental vibrations. However, the spectral bands are not determined 
exactly. There are some uncertainty regions, where the fundamental vibrations 
can also take their frequencies. Furthermore, from theoretical point of view it 
is sufficient to calculate the eigenfrequencies so that they have at most a 3 % 
deviation from the experimental ones. Hence, about the fundamental vibrations 
of the water molecule we can use the following experimental information. 
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TABLE! 
Experimental observed frequencies and uncertainty regions of the normal 
vibrations in em-I. (condense phase) 

asymmetric symmetric angle 
Isotope O-H stretch bending 

H2O 3755.8 3656.7 1594.6 
[3634, 3868) [3547, 3766) [1547, 1642) 

D20 2788.1 2671.5 1178.3 
[2704, 2872) [2591, 2752) [1143, 1214) 

HDO 3707.5 2726.7 1403.4 
[3596, 3819) [2645, 2809) [1361, 1446) 

The observed experimental frequencies are the centers of the uncertainty 
regions expressed by intervals. In the uncertainty regions we will prefer 
frequencies near by the interval centers against frequencies at the boundaries. 
This is the starting point of fuzzification. In the simpelst case, we can evaluate 
the observed experimental frequencies with 1, the values on the interval 
boundaries with 0 and connect the points by a straight line. The arising fuzzy 
sets are triangular fuzzy numbers. There membership functions are given by: 

m;,., (f) = (1) 

0, otherwise 

The index i stands for the isotope number: 1 for H20, 2 for D20 and 3 for 
lIDO and the index j describes the type of the experimental frequence (1 and 2 
for asymmetric and symmetric 0- H stretches, respectively, and 3 for angle 
bending). The quantities eij are the experimental frequencies in the i-th row 
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bending). The quantities ~j are the experimental frequencies in the i-th row 
and j-th column of table 1 and rij, lij are the corresponding interval 
boundaries. We will call the fuzzy numbers fuzzy observations of the 
experimental frequencies. The membership functions of the fuzzy observations 
are illustrated in figure 2 for the H2O- molecule .. 

Figure 2: Fuzzy Observation and 
Evaluation for H20 

Summarized all experimental information about band positions and uncertainty 
of the fundamental vibrations is expressed by fuzzy observations. Now, we can 
collect the single fuzzy observations Vii' v'"2 and v''3 for the i-th isotope to one 
fuzzy observation Vi containing the same information as the single fuzzy sets. 

This is achieved by cross product of the fuzzy sets: Vi = v,1 X ViZ X Vi] . 

If the cross product is defined by the minimum operator, the membership 
functions of the fuzzy sets Vi , i=I(I)3, are given by: 

(2) 

Equation (2) assigns to every vector (Vii' Y;2' Vi]) of experimental values a 
fuzzy evaluation. The assignment is illustrated in figure 2 by a doted line. On 
the same way, we combine the single fuzzy observations for each isotope to one 
fuzzy set V = VI X V2 X V]. Starting from (2) the membership function is given 

by: 
(3) 

From a heuristical point of view, it is all the same, if the single fuzzy 
observations or the combined ones are used. 

From physical point of view, unprecise informations about the force constants 
are available in form of interval restrictions. We can determine special 
intervals where the force constants take their values. Values outside of the 
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intervals can be neglected. Contrary to the experimental frequencies, we cannot 
prefer some values inside of the intervals. Hence, at first we will take ordinary 
(crisp) intervals to model the uncertainty of force constants. However, we will 
see at the end of this paper that sometimes it is useful to model the uncertainty 
of force constants by fuzzy numbers, too. 

For example, the uncertainty of the 4 water force constants can be expressed by 
the following interval restrictions: 

Fr E ~ = [6.5, 8.5) mdyn/ A Frr E Irr = [-1.5, 1.0) mdyn/ A 

Fd E lei = [0.6, 2.0) mdyn A Frd E Iro = [-1.5,2.0) mdyn. 
(4) 

Now, the consideration of interval uncertainty means to carry out NCA for all 
force constant combinations (Fr,Frr,Frd,Fd) Elr X I.,. x In! X I d • 

Since the number of possible force constant combinations is not enumerable, 
we calculate with all combinations resulting by a discretization of the intervals. 
For example, we can take an equal step width of 0.05 in the intervals Ip Irr, Ird 
and~. Then, 4,305369 million combinations arises. The immense number of 
combinations shows that a solution of such problems require powerful fast 
computers. 

3 Fuzzy Evaluation 

Now, we can define the fuzzy evaluation of a force constant combination. This 
is the significant step of fuzzification. To the evaluation we start from the 
calculated eigenfrequencies and consider their membership degrees to the 
corresponded fuzzy observations of the experimental frequencies. According to 
(2) and (3) we have to substitute the quantities v ij by the corresponded 

calculuated eigenfrequencies. First of all we have to assign the quantities vij to 

the their corresponded eigenfrequencies by means of eigenvectors. In the case 
of the 3- atomic molecules, the sign of the first two eigenvector components 
must be the same for symmetric stretch and must be opposite for asymmetric 
stretch. In general, we assign the quantities ViI and V i2 to asymmetric and 

symmetric stretches, respectively, and Vi) to angle bending. However, there are 

some cases where ViI and V i2 change there roles. 
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The fuzzy evaluation has to carry out for all force constant combinations 
resulting by the interval discretizations. Combinations with a high fuzzy 
evaluation (their membership degree is near by 1) have a good frequency 
approximation in the fuzzy sense. According (2) and (3), the following fuzzy 
evaluations can be distinguished: 

• the single fuzzy observation, if only the experimenatl frequencies of one 
isotope are taken into consideration 

• the totalfuzzy evaluation, if the experimental frequencies of all isotopes 
are taken into consideration. 

Additionally, we will introduce an isotope evaluation as a measure to evaluate 
the similarity of single fuzzy evaluations. The isotope evaluation is of high 
physical importance, because all isotopes of an given molecule are descibed by 
the same force field We have to emphasize that to a fuzzy evaluation of force 
fields the consideration of isotope molecules is optional. 

The single fuzzy evaluation for the H2O- molecule called B 1 is defined by: 

where V I I'VI2 and VI] are the calculated eigenfrequencies of the force field (Fr, 

Frr, Frd, Fd). Analogously, it follows the single fuzzy evaluations B2 for 020 
and B 3 for HDO. The total fuzzy evaluation called B is defined by 

B(Fr,Frr,Frd,Fd) = m,( VI' V.' v,) = min(m;, (VI)' m.., (v.), m .. (v,» = min(B"B"B,) 

The isotope evaluation as a measure like the fuzzy sets B 1, B 2 and B 3 are 
similar can be defined by: 

min(BI ,B2. B3 ) 

B = 
J max(BI ,B2..B]) 

B 

The fuzzy evaluations B}. B2' B3. B and B] can be interpreted as fuzzy 
relations on the force constant space, stretched by the force constant intervals. 
The projections of the relations to the axes Fr, Frr, Frd and Fd are a main tool 
to analyze the relations. In the case of the water molecule we get the projections 
illustrated in figure 3. 
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Figure 3: Projections to the force constant intervals 

In distingush to the total fuzzy evaluation the isotope evaluation is illustrated as 
a stroked line. We can interprete these projections as evaluations on the 
assumed force constant intervals. A force field is called fuzzy-optimal. if the 
force constant combination has the greatest isotope evaluation under all 
combinations with a total fuzzy evaluation greater than 0.5. Finally. we get the 
following force field (in brackets the LSE solution is given): 

F/ = 7.8 (7.57) mdynl A. 

Fd* = 0.65 (0.73) mdyn 'A 

Fr/ = -0.1 (-0.26) mdynl A. 

* Frd = 0.05 (-0.43) mdyn. 

To an analysis of the force constants the projections play an important role. 
Especially. we can give the following interpretation: If for Fr = Fr* the 
projection value is equal to a. than all force constant combinations (Fr*. Frr. 
Frd. Fd) have at most the total fuzzy evaluation of a and for at least one 
combination the evaluation is equal to a. Analogous statements hold for the 
other force constants. However. we have to emphasize that these interpretations 
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require the definition of cross product and projection with minimum and 
supremum operator, resp .. 

Now, we will investi~ the total fuzzy evaluation near by the fuzzy optimal 
point (Fr*, Frr*, Frd , Fd\ To do this, we consider the membership degrees 

.. * * * * * * * * of combinations (Fr, Frr , Frd , Fd ), (Fr, Frr, Frd , Fd ), (Fr , Frr , 
* * * * Frd, Fd ) and (Fr , Frr , Frd , Fr ) where Fr, Frr, Frd and Fd can take any 

value in the intervals Ir, Irr, Ird and Id With other words, we consider the 
projections of the fuzzy relation B to Fr, Frr, Frd and Fd under the secondary 
condition that the values of the other force constants hold fixed. We will call 
these projections View from the top. In the case of the water molecule, the view 
from the top is illustrated in figure 4 by a continous line. 

Fr ... 7.8 Fr Frr ... -0.1 Frr 
0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

~.:! 7 e.:! ?,.o -, 0.0 

, ~ ,~ 

Frd ... 0.05 Frd Fd 0.65 Fd 
I 

, ... 
0.8 , \ 

0.6 " • , 
0.6 

, 
0.6 

0.4 0.4 

0.2 0.2 

0 0 
-1.5 -1 -'1.5 0.5 1.5 2 0.6 0.8 1.2 1.4 1.6 1.8 2 

Figure 4: View from the top and fuzzy force constants for H20 

Starting from the view from the top, we are able to specify the statement "near 
by" the optimal force field in an analytic way. If the projection curves are 
normalized, fuzzy numbers Fr,Frr,FrdandFd on the force constant intervals 
Ir, Irr, lrd and ld arise. From spectroscopical point of view, these fuzzy 
numbers can be interpreted as fuzzy force constants. Now, the consideration of 
fuzzy force constants into the NCA means to solve a fuzzy eigenvalue problem. 
The problem can be solved by a-cuts. Hence, fuzzy eigenfrequencies arise. The 
membership functions of the fuzzy eigenfcequencies are illustrated in figure 5 
by continous curves. Comparing the fuzzy eigenfcequencies with the fuzzy 
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observations of the experimental frequencies, marked in figure S by doted lines, 
'We conclude that the fuzziness of the observations is reflected by the fuzziness 
of the force constants. 

0.8 

0.6 

0.4 

0.2 

o~~~------U-U-~~~ 

0'13 il12 0'11 

Figure 5: Fuzzy eigenfrequencies 
and fuzzy observations 

Summarizing the results, the fuzzy approach to the NCA-model shows an 
interesting new way to the determination of physical usefull force fields. A 
main advantage of the approch is that theoretical as 'Well as experimental 
uncertainty and expert knowledge about the band positions of the vibrations 
can be taken into consideration. A transfer of the approach to bigger molecules 
is of main interest to investigate the couplings between vibrations of different 
atomic groups. Especially, about the numerical values of coupling force 
constants vary vage informtion are available. The fuzzification of the coupling 
fore constants can be an interesting new way to get more informations about 
the force field of complex molecules like zeolites. 
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Fuzzy Elastic Matching of Medical 
Objects Using Fuzzy Geometric 

Representations 

L. Kohler and P. Jensch 

Abstract. The term fuzzy elastic matching describes an algo­
rithm based on the combination of heuristic search and fuzzy 
heuristics. It interrelates two medical objects represented as 
wireframes or attributed skeletons. Parts of a medical object 
(i.e. coronary arteries) can be identified considering an abstract 
model. The fusion of different image modalities (i.e. liver an­
giographiy / tomography) into a normalized one can be achieved 
using a common element. A new fuzzy algebraic and geometric 
framework enables us to introduce fuzzyness into object repre­
sentations to treat their natural unsharpness. 

1 Introduction 

A prerequisite for the processing of medical objects is their represen­
tation as wireframe objects or attributed skeletons. Lateron these data 
structures can be visualised again as medical objects and can be given ar­
tificial attributes such as transparency of their surface to have an insight 
[Ko93] [MaKo93]. The Renderman language has defined a standard for 
modelling spatial objects and defining visualisation senaries. It's part of 
the operating system NeXTstep, so the management of wire frame objects 
is tightly coupled to other data modalities such as text, vector graphics, 
images, control elements or even sound, which leads to a uniform way 
of integrating them into multimodal applications [ME92]. The language 
Prolog guaranties both an easy way of representing and of searching in 
a large set of wireframe nodes. Parallel Prolog is able to do a heuristic 
search and our fuzzy arithmetic unit is able to implement the heuristic 
for directing the search. The compilation of prolog not only provides 
efficiency gains in processing but also essential information for efficiently 
representing data structures [KoS9j. 
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2 Fuzzy Representation of Wireframes 
And Skeletons 

We have to introduce fuzziness into classical wireframe representations 
to treat the unsharpness of natural objects. Fuzzy vectors, fuzzy edges 
and fuzzy angles substitute the crisp components of wireframes. 

2.1 Semantics 

The definitons [KruGebKla93] form the basis for formalizing the seman­
tics of fuzzy numbers, -vectors, -angles and -coordinate systems. 

Definition 1 Fuzzy Equivalence Relation. Let T be a t-norm. The 
mapping ET : X x X --> [0,1] is called an equivalence relation with re­
gard to T , if its reflexive, symmetric and transitive as follows 

The property extensionality of fuzzy sets to be defined now restricts fuzzy 
sets to be compatible to the underlying equivalence relation. 

Definition 2 Extensionality. Let ET be a fuzzy equivalence relation 
in X. A fuzzy set Ax is called extensional if it has the following property: 

In effect this interrelation has the essential implication that it's valid 

• E(x, x') = 1 :::} 
• E(x, x') ~ ( :::} 

By fixing one - for a normalized fuzzy set A characteristic - Jl-value 
the definition interval for all other Jl-values is restricted to maintain the 
compatibility with the underlying equivalence relation: 
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The property extensionality now assures the fact, that every E­

extensional fuzzy set subsumes a singleton of E so having at least 
its fuzzyness. We showed that an extensional mapping that obeys 
ET 1 (X,X') AT ... AT ET:,(X, x') ~ FT'(4)(x),4>(y)) with T ~ T' maps 
extensional to extensional fuzzy sets so preserving the fuzzyness. 

2.2 Fuzzy Number Calculation 

For reasons of efficiency restricted classes of fuzzy numbers are used: 
LR-fuzzy numbers which are based on linear or exponential reference 
functions [DubPr80]: L(z) = R(z) = max(O, 1- z). The fuzzy extension 
is specified by the paramters a and {3. LR-addition is defined as follows: 

(a,a,{3)LR + (a', a', {3')LR (a + a', a + a' , (3 + (3') LR 

To achieve notational consistency we introduce the following modifica­
tion to LR-numbers. This has effect only to negative values. 

Definition3 Extended LR-Number Representation. A LR­
number is represented by the tripe! A = (a, a, (3)LR with the following 
semantics 

{ 
L (a:x) for la - al ~ Ixl ~ lal 

R ( x~a) for lal ~ Ixl ~ la + {31 . 

For negative LR-fuzzy numbers this leads to the modified representation 
-A = (-a,-a,-f3)LR. The described fuzzy set remains the same. 

Jl-values the the 'additive' 
Instead of defining LR-subtraction independently we derive its se­

mantics from LR-addition and -negation. The treatment of positive and 
negative values is based on the 'pyramidal' evaluation of Jl-values follow­
ing the extionsion principle and determining the Jl(z)-value assignment 
to z = x + y or z = x - y both along the 'additive' diagonal. Conventional 
LR-subtraction can be modelled by subtracting a crisp and adding a zero 
fuzzy vector. 

Theorem 4 Compensatory LR-subtraction. Given the definitions 
of negative LR-numbers and LR-addition there is a semantics for LR­
subtraction that delivers a solution to the equation 

A with X = B 
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Compensatory LR-subtraction will be defined by 

(a, 0:, !3)LR - (a', 0:', !3')LR (a, 0:, !3)LR + (-a', -0:', -!3')LR 
(a - a', 0: - 0:',!3 - !3')LR 

using the extended LR-notation for positive and negative LR-numbers. 

Proof The semantics of the difference fuzzy number A - B is defined by 
the equation A - B + B = A on the basis of fuzzy addition. 

1'(..i_B)+B(X) = I'..i(x) 

1'(..i_B)+B(X) = SUPr=.+y min{I'..i_B(z),I'S(Y)} 

1'(..i_B)+B(xO) = 1'..i_B(zO)=I'B(YO)=I'..i(xO)=I'..i+B(xO+YO) 

1'..i_B(xO-YO) = 1'..i+B(xO+YO) 

Evaluating the sup/min-operators on equivalent reference functions 
yields the equivalence of the function parameters J.l A_B(z) / J.lB(YO) and 
of J.l(A-B)+B(x) on certain zo/yO values (along the diagonal x = z + y). 
Because of J.l(A-B)+B (x) = J.l A (x) this equality can be transfered to 
J.lA_B(xO - Yo) = J.lA+B(xO + Yo) . For addition the relation between 
Xo,Yo and z yields: 

l'o+v(Z') SUP.'=r+y min{l'o(x),l'v(Y)} 

= SUP.'=r+y min{Lu (ml~ -r) ,Lv (m~ -y)} 
= sUP.'=r+y min{l- m~-r ,l-~} 

l'o(xo)=I'~(Yo) ,xo=mu - f(mv -Y~) 
mCJ~+J-.t ,Xo ~mU-:;ttV+cu 

= 
= 

Calculating the fuzzy difference now leads to the definition of LR­
subtraction. Substituting Xo + Yo = Xo + Xo - z for z, and calculating the 
sum results in new dependencies for Xo and J.lA+B(xO+YO) of z = Xo-Yo. 

I' ..i+B(xO+YO)=1' ..i+B(xO+xO -z) 

= 
rnA +mB -(2z0-.z) _ ,81)\A -amB+cu:: 

a+t8 ,XO-,8 0-

(mA-mB)-' 
Q-fi = 

This last formula uncovers the semantics of LR-subtraction: 
(a,a ,/3)LR-( a' ,a' ,/3')LR=( a-a' ,a-a' ,/3-/3' )LR o 
TheoreIll5 Group Property. The set of triagular LR-numbers to­
gether with addition establishes a Group . 
• A+O=A .A+(-A)=O .(A+B)+C=A+(B+C) 

Proof For associativity/existence of a neutral element see [DubPr80]. 
The existence of an inverse element has been shown above. 0 
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2.3 Fuzzy-Vectors 

The presented approach is a generalisation of the concept of [Ce87] and 
extends the applicability of triangular LR-fuzzy numbers to the multidi­
mensional space. A fuzzy vector is defined componentwise by triangular 
fuzzy numbers. Its global membership function is defined by cummulat­
ing the membership function of each component using a Yager-t-norm. 

Definition 6. Let Ai, 1 ~ i ~ n, be triangular fuzzy numbers of type 
LR, Ai=(ai,ai,.8i),Ai ~ IR x [0 ... 1]. Let X = (Xl, ... ,Xn)t be a 
vector with Xi E IR. Then the fuzzy- Vector A = (AI, ... , An)t is defined 

by its membership function J.lA:(X)=max (0, I-JL.~=l (1-J.lA:/X;) r ) 

""~ (la'- Xi l)2) L..",=1 .pri spri = I" - • { a"X· < a' 

.8j;Xi ~ aj 

Rendering a 3-dimensional fuzzy vector results in an oblique ellipsoid. 
The mathematical properties of fuzzy numbers are valid for fuzzy vectors. 

2.4 Fuzzyfying a Coordinate System 

Restricting our attention to E-extensional fuzzy vectors we are able to 
introduce a fourth category of coordinate system transformations: 

• scaling • translation • rotation • fuzzyfying . 

The effect of this extension will be seen considering fuzzy-angles. 

Definition 7 Fuzzy Coordinate System. Let xn be the space in 
which to consider fuzzy vectors and E be a fuzzy equivalence relation on 
X. Any E-extensional fuzzy vector in a fuzzy coordinate system will be 
given an additional index E in LR-notation: AE = (a, a, .8)LRE. 

The fuzzyfied coordinate system/ space X.e is obtained by subtracting 
from any of its fuzzy vectors 

the zero singleton vector 

on 
S ((O,f,f), ... ,(O,f,f)LR with J-tOs(x) E(O,x) 
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so reducing its relative fuzzyness to 

XE = ((Xl, 6L - (, 6R - (), ... , (Xn, ~nL - (, ~nR - ())LRE. 

and increasing that of the coordinate system. Adding a zero singleton 
will decrease general fuzzyness. 

A vector which represents a singleton will become a crisp vector in­
dexed by E. Of any extensional fuzzy vector the common part of fuzzy­
ness will diminish leaving just the rest and the index E. This will allow 
to treat fuzzy vectors as single quantities. 

2.5 Fuzzy Angles 

Fuzzy Angle Coordinates of a Fuzzy Vector 

The representation of a fuzzy vector skeleton has to be invariant with 
respect to orientation in space. Therefore we will develop a special kind 
of a fuzzy polygon tree, based on a fuzzy angle definition. 

Drawing lines through the origin and an arbitrary element of an a-cut 
we can determine its angle to the abscissa and the bounds of the interval 
of angles. Let ~ : IR x IR -+ [0,211"] be a mapping that determines the 
angle between the abscissa and a vector and let sup 0 = O. Let A = 
(A l ,A2 ) be a two dimensional fuzzy vector with Ai = (ai,ai,{3d, i E 
{I,2} . Then the fuzzy angle it is a fuzzy-set in [0,211"], defined by 

{ (rp, J-ta(rp)) I rp = ~(x, y), (x, y) E IR x IR } 

sup min {J-tA:(x, y)} 
(x,Y)E<I>-l(cp) 

The mapping ~ is defined by 

~(X, y) y~O 

Any angle value is a member of a fuzzy angle if the line represented by 
it touches or cuts at least one a-cut of the fuzzy vector. The maximum 
a-value of these a-cuts determines the membership grade of the angle. 
Our representation of a fuzzy angle is a fuzzy number. The nonlinearity 
of the sine and cosine functions causes a fuzzy angle not to be a triangular 
fuzzy number. But if the spreads of the fuzzy vector are very small with 
respect to the distance to the origin, the fuzzy angle can be approximated 
by a triangular fuzzy number. 
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Let A = (A},A 2 ) , Ai = (ai, ai, {3dLR, i E {1,2} be a fuzzy vector and 
let a the correspondence fuzzy angle with support S( a) = [CPmin, CPmaxl 
and 'mean value' or apex angle cp. Now its possible to approximate a by 

a ~ (CP,CP-CPmin,CPmax-CP)LR with 
cP <T>(a1, a2), 

CPmax 
cpmin 

<T>(X Smor , YSmu) 
<T>(XSmin ' YS min ) 

(Xmax, Ymax) = (a1 - (32 HOS( cp), a2 + a1 *Sin( cp)) 

(Xmin, Ymin) = (a1 + a2 * cos( cp), a2 - (31 uin(cp)) 

The coordinates (XSmu'Y'mu) and (x.min,y.m,J describe the points of 
intersection of the perpendicular to the line with angle cP through point 
(a1, a2) with the border of the a-cut for a = 0 . So the approximated 
fuzzy angle is a subset of the exact fuzzy angle. 

Fuzzy Angles Relative to a Fuzzy Vector 

Now we want to describe the orientation of a fuzzy vector with respect 
to another one. The idea is to determine a fuzzy angle of a fuzzy vector 
whose origin isn't a crisp point. We consider the set of all lines that 
cut the a-cuts of both fuzzy-vectors for a fixed a. If the spreads of the 
fuzzy vectors are non zero, then there exist exactly four lines that are 
tangential to the a-cuts. The extreme angles ofthese lines are the bounds 
to the a-cut of the fuzzy angle. The set of all a-cuts is a monotone 
decreasing series which defines the fuzzy angle completely. 

Its obvious that this fuzzy angle definition is equivalent to the fuzzy 
angle of the difference vector with a crisp origin. The span of the fuzzy 
angle is determined by the sum of all spreads which also is the spread 
of the difference vector calculated by conventional subtraction. The real 
reason for taking into account the sum of all spreads is somewhat more 
complex. 

A difference vector for determining the relative angle just results 
out of a coordinate system translation which locates the new origin in 
the apex of the reference fuzzy vector. Such a coordinate translation is 
achieved and has to be based on a crisp translation vector. If you trans­
form by subtracting a fuzzy vector actually two transformations take 
place: the translation by the apex of the fuzzy vector and the extension 
of the coordinate system fuzzyness. Each crisp vector in the transformed 
coordinate system implicitly gets the fuzzyness of the transformation 
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vector. The fuzzy angle definition is based on the difference of the fuzzy 
vector spreads - the spread of the difference vector - and reflects the 
relative angle of fuzzy vectors in a coordinate system of extended fuzzy­
ness. But the angle of a crisp vector in a fuzzy coordinate system has a 
fixed fuzzy ness determined by its own fuzzy spreads in normalized fuzzy 
space and that of the origin. Both equal the fuzzy extension of the trans­
formation vector. The total fuzzyness of the relative fuzzy angle now is 
increased by twice these spreads which again amounts to the sum of all 
spreads. 

The calculation of an angle between three fuzzy vectors is inconsis­
tent using traditional fuzzy arithmetic but valid within the developed 
framework. 

3 Fuzzy Processing of Artery Skeletons 
3.1 Fuzzy Representation of Artery Model 

We describe an orientation invariant representation of an artery model 
based on fuzzy vectors and -angles to identify arteries. A polygon 
(Pl .. ·Pn) with Pi E R3 will be defined invariant with respect to ori­
entation. Each segment with endpoints Pi, PHI called primitive charac­
terises it's own coordinate system. So the primitive Pi+! , Pi+2 is defined 
as a triple of attributes (a, a, (3), where a is the euclidian distance be­
tween the points PHI and PH2, a is the angle between the y-axis and 
the projection of (Pi+I, PH2) onto the xy-plane, and {3 is the angle be­
tween the x-axis and the projection of this primitive onto the yz-plane. 
This description was done in the local coordinate-system of the primi­
tive (pi,PHd. The next primitive (PH2,Pi+3) has to be defined in the 
local coordinate system of (PH 1 , PH 2). Therefore we rotate the system 
(pi, PHd about the angles a and {3. 

The exact position of a vessel branchpoint is difficult to describe 
because of the diameters of the vessel segments. So we define such a 
branchpoint using a fuzzy vector centred inside the branch. It is deter­
mined by fuzzy mathematical morphology using a self extending, cen­
tering and moving circle shape. While extending the circle shape we 
evaluate the areas of replicated neighbour pixel partially corresponding 
to the round shape. This procedure simulates the vertical calculation of 
the partialvolumeeffect and also improves measurement of the diameter 
of an artery. 

The spatial course of a blood vessel containing branch points can 
be approximated by a 3D-polygon using fuzzy line segments and fuzzy 
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angles. These attributes are derived from fuzzy vectors. A fuzzy vec­
tor contains both the position of a segment endpoint - this is the 
apex of the vector centered inside the vessel - and the diameter of 
the vessel represented by its spreads. Now the representation of a com­
plete vessel is the concatenation of vessel segments and branchpoints 
bv = (ls 1, arc1, .. . lsj, arcj , ... ). It describes the fuzzy skeleton of the 
artery as a string. 

3.2 Fuzzy Skeleton Matching 

Conventional string matching only deals with strings of discrete symbols. 
No numerical data or attributes are included. For pattern recognition 
it has been shown that injection of attributes into symbols makes it 
easier to handle noise or distortion and so increases recognition rates. 
Generally speaking, matching a finite string x of attributes with another 
one called y has to transform the attributes in x into those in y while 
constructing a minimum cost sequence. 

Therefore fuzzy theory seems to be an adequate technique for deter­
mining similarities between unknown and enrolled patterns. Assuming 
x E X to be an unknown pattern out of a infinite set with it's fuzzy at­
tributes, the recognition result is determined by the following equation 
using a similarity measure S: j = maxjE! Sij So we choose that pattern 
y E Y with the correspond possibility distributions 71'il, ... , 71'in that are 
most similar to that fi,i1 ... fi,im of pattern x E X with respect to the 
similarity-measure Sij. 

3.3 Similarity Measure for Fuzzy Vectors and Fuzzy 
Angles 

The similarity between two fuzzy vectors A 1, A2 should represent the 
distance between the apex a1 and a2 as well as the fuzziness represented 
by the spreads. In our implementation this similarity is able to measure 
both, the position as well as the diamter of a blood-vessel. 

Definition 8 Fuzzy Similarity. Let V be the set of all fuzzy vectors. 
s : V x V ..... [0,1] is defined to be a fuzzy similarity if it's valid: 

1. idempotence: s(A, A) = 1 VA E V 

2. commutativity: s(A1 ,A2) = s(A2,At}, VA 1 ,A2 E V 

3. apex identity: s(A1, A 2) = maximum ~ a1 = a2 



322 Fuzzy Classification 

4. spread monotony: 'v'A1,A2,A3 

• Ix (I-'A I (i) n I-'A 2 (i))di < Ix (I-'A I (i) n I-'AJ(i))di ~ 
S(A1,A2) < S(A1,A3) with a2 = a3, so the apex of A2 and 
A3 are the same . 

• S(A1,A2) < S(A1,A3) ~ lIa1,a211::; lIa1,a311'v'A1,A2,A3 E V 
with (tA 2 ,. = (tAJ,. and {JA 2 ,. = {JA J,., so the spreads are the 
same. 

Now consider: 
. _ Ix (PAl (X)npA2(X))dx 

szm(A1 , A 2 )- fx(PA I (X)UPA 2(X))dx 

The similarity measure sim comes closest to meeting the requirements. 

4 Conclusion 

The developed fuzzy algebraic and geometric framework proved to be a 
valuable tool by which the natural unsharpness of medical objects can be 
treated. The interpretation of fuzzy values as heuristic values enriches 
traditional pattern matching approaches. Together with fuzzy geometric 
representations it enables to interrelate different but similar objects. 
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6.5. FRED 
Fuzzy Preference Decision Support System 

A knowledge-based Approach for fuzzy multiattribute 
Preference Decision Making 

Martina Wiemers 

Abstract 
Life insurance takes into account interests of all groups 
involved; on the one band the interests of the insurance company 
and on the other band the interests of the clients. 
In this context the contract of insurance can be interpreted as a 
complex decision process whicb has to consider the different 
interests. In this article a method for checking an apply will be 
proposed. The method is motivated by fuzzifying an outranking 
approacb. In the ftrSt step the apply will be prejudged by fuzzy 
inference and product rules and in a second step the analyzed 
alternatives of risk minimizing will be put in a bieracbica1 order. 
The best alternative will be realized in a conttacL The method is 
realized in the decision support system FRED (fuzzy preference 
decision support system) whicb improves a decision support 
system (DSS) with a fuzzy knowledge-based element to get a 
usable tool for checking life insurance applies. The system is 
developed on a personal computer. 

1 The importance of checking applies in life assurance 

The aims of an insurance company can be found in apply cbecking in a 
condensed form. Especially in apply cbecking many of high complex 
decision potentials can be found which can be interpreted as 
multidimensional decision spaces. Most of the estimations are of a 
qualitative nature. Each criterion of checking touches different aspects of 
the company. Therefore it is necessary to find an estimation of different 
criterions which can be divided into 

estimations of the risk of the apply: 
medical risk 
moral risk 
risk of speculation 
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estimations of the stock 
stock expansion 
stock selection 

estimations of seemity 
qualification of reinsurance. 

Fuzzy Classification 

Most of the estimations need personal experience and practice. The 
estimation founded on experience has to adjust with economic data like 
policy of the company, market conditions. The clerk in charge has to show 
himself to be flexible in order to fmd an estimation appropriate to the actual 
situation. From the point of view of the underwriter the aim of checking 
applies is to accept only contracts which agree with the aims of the 
company. Using a joint checking of applies the individual risks of an apply 
can be divided into desirable and undesirabel risks. Main element of the 
approach is the existence of the individual risk whose estimation is based 
upon experience. Consequently the approach cannot be done schematically 
but needs hemistic elements (sensitivity) which represents a characteristic 
element of checking applies. Furthennore a comprehensive knowledge 
about processes and use of processes is required for reproductable results 
especially with incomplete informations [Raestrup, 0.(1992)]. Reading 
between the lines is often needed. 
The decision about accepting or rejecting an apply has to execute in a short 
time. The decions requires superior use of qualitative estimations which are 
based upon an individual characteristic of each apply. 

2 An integrated approach for checking applies 

A method for representing personal and often intuitive elements for decison 
making is given by the theory of fuzzy sets. In fuzzy sets it is possible to 
use uncertain, fuzzy, and incomplete information. Advantages are given by 
using colloquial expressions in linguistic variables. In fuzzy sets the 
membership of an element to a set can be defined by a degree of 
membership. The situation of 'belongs to a set' which value 1 and 'belongs 
not to a set' with value 0 becomes effaced to a whole intervall [ 0, 1 ] 
[Jaeger, A(1986)]. A fuzzy set over a discourse X is a set of pairs 

F = { x, p.F<x): x EX} with ~ membership function of X A linguistic 

variable is a quintuple (y, T, U, G, M) with V name of the linguistic 
variable, T tenD set of linguistic expression of V, G syntax rule for 
generating x E T, M semantic rule. A linguistic variable can be illuminated 
by an example in the context of life assurance. The linguistic variable 
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represents the medical risk of a person and includes terms like moderate 
handicap, medium handicap, strong handicap, intense handicap. Each term 

can be shown by trapezoid membership functions on the set of risk 
additions on the intervall from 0 to 150 %: 

( 0, 15,25, 30) 
( 20, 25, 50, 55) 

moderate handicap 
medium handicap 
strong handicap 
intense handicap 

( 45,50, 100, 110) 
( 90, 100, 150, 150) 

The membership functions can be illumend in Fig. 1: 
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Linguistic variables are used in fuzzy rules which are used for pre judgement 
of the apply. The fuzzy rules containt statistical (objective) and subjective 
knowledge. After the prejudgement the apply will be compared with other 
contracts to find out strong and weak points. 
The decision support system FRED containt several steps: 

registration of data and check of plausibility 
prejudgement of the apply 
comparison with contracts of reference 
analysis of risk minimizing alternatives 
recommendation 

2_1 Registration of data and proof of plausibilities 

In the first step data needed for the checking and contracting will be 
collected and checked. The data are given by the filled in form of the apply. 
Because of the regulations of law and clauses of the company the possibility 
of accepting the apply has to be decided about Especially discrepancies 
with principles are checked. 
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2.l Prejudgement 

After first accept the apply will be estimated by different criterions. The 
criterions are the basis for the ranking in the next step. Because of rules 
representing statistical knowledge and personal experience with apply 
checking it will be easy to find an estimation. A fuzzy judgement will be 
possible by using approximate inference and production rules. Here 
linguistic variables can be used. An example for approximate reasoning will 
be illustrated by estimating overweight concering DfP. -Ft and siu of a 
person. The linguistic variable siu is fonnulated by the term set 'smtJl(, 

muIWn. f4rae'. the variable rveitJfat by 'Gjfo, mdiJun, M.tmj and 0fII- by '!JDIUIB, 
muIWn. oU. The parameters are given by: 

Ling. Variable Value Parameter 
weight (in kg) light 4<W 50/1.0 70/1.0 8O,u 

medium (IJ,u 70/1.0 100/1.0 1l0,u 
heavy 9O,u 100/1.0 155/1.0 165,u 

size (in cm) small 140/1.0 lSO/1.0 164/1.0 174,u 
medium 15610 165/1.0 180/1.0 190,u 
large 171,u 181/1.0 200/1.0 210,u 

age (in years) young 15/1.0 25/1.0 35/1.0 40,u 
medium 30,u 35/1.0 50/1.0 55,u 
old 45,u 50/1.0 55/1.0 60/1 

The conclusion of the fuzzy rules gives hints about risk additions (fiatuficap) 
of the individual risk. The linguistic variable ristadilition is given by: 

Ling. Variable Value 
handicap (in %) moderate 

medium 
strong 
intense 

Parameter 
O,u 15/1.0 25/1.0 30,u 
2O,u 25/1.0 SO/1.0 55,u 
45/0 SO/1.0 100/1.0 110/0 
9O,u 100/1.0 lSO/1.0 

Typical rules for fInding the degree of additions with respect to overweight 
are: 
If size small and weight light and age young. then handK:ap modeJ3Ie (0.1). 
If size small and weight medimn and age young. then handK:ap moderate (1.0). 
If size small and weight Iavy and age young. then handK:ap modeJ3Ie (0.5). 
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The membership degree of fullfilling the rule is given in brackets. 
For example a medium handicap is given for a 28 years old , 160 cm tall 
man with a weight of 90 kg. 

2.3 Comparison with Contracts or ReferellCe 

In the second step the apply will be compared with contracts of reference. 
Strong and weak points of the apply will be become plain. Mostly it will not 

be possible to accept or reject an apply with regard to all criterions. 
Concerning some criterions the apply will be accepted, concerning others 
the apply will be rejected. In this situation a compromise has to be found. 
The proposed method is based upon an outranking approach which uses a 
degree of preference by a gradual (fuzzy) relation. The preference is 
modelled towards a claim. The degree of membership is integrated into the 
theory of possibility and necessity [Dubois, D., Prade, H.(1983), Zadeh, 
L.A.(1978)]. In the following the standard notation of fuzzy sets is used 
[Zadeh, L.A.(1973), Zimmermann. H.-1.(1991)]. 

Definition 1 
Let F, G fuzzy numbers and P a fuzzy relation which gives the degree for 
F ~ G. The membership function ofP is given by 
~p(F~ G) = sup min{~F<u),sup~{v») = sup min {~p(u),~(v» 

u vSu u,v,u2:v 

J.1p is named possibility of ~ [Zadeh, L.A.(1978), Baas. R.E .• 
Kwakt"maak, K.(1977), Dubois. D .• Prade. H.(1983)]. 

Definition 2 
Let F und G fuzzy numbers and N a fuzzy relation which gives the degree 
for F > G. The membership function of N is given by 

~N(F > G) = inf max {1- ~:F<u), inf ~(v)} = 1- sup min {~:F<u). ~(v)} 
u v~u u,v.u~v 

= 1-~p(G ~ f). 

The relation N denotes the grade of necessity of strict dominance [Dubois, 
D .• Prade. H.(1983)]. 
In the following suppose a multicriteria decision situation involving X = 
{x 1 •...• xm} set of alternatives and K = { k 1, ...• to) set of criterions. 
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For each criterion kj exists a linguistic variable Zj with fuzzy numbers 

1 l(j) 1 l(j) 
{Zj •...• Zj }andZj< ... <Zj. 

For each criterion exists optj = { max. min }. Each altemative is e~mated 
concerning a criterion kj by Zij e Zj. For each alternative a vector Zl = (Zil • 

...• Zin> exists concerning all criterions kl •...• kn with 7iJ. e Zl.-.zme Zn-

Example: 
Suppose X a set of life assurance applies with X = {3AiY 1. apply 2. apply 3} 
and K cri1erions for checking with K = { medical risk, moral risk, risk of 
speculation. ability of reinsurance. estimation of stock value} . 

meei. Risk mor.Risk Spec. Risk Rein- stock value 
surance 

apply 1 very bigh medium medium high very high 
apply 2 medium very low low high high 

I 3 hi h low v low low medium 

min min max max 
very very very very very very very very very very 
low low low low low 
very low very low very low very low very low 

Scale medium medium medium medium medium 

Zt high high high high high 
verybigh very high very high very high very high 

very very very very very very very very very very 
high high high high high 

The estimation of apply 1 is zl = (very high. medium. medium. high. very 
high). 

2.3.1 Scales for each criterion 

For modelling the linguistic variables four thresholds are given as 
indifference. preference. irritation and veto threshold (IS. PS. RS. VS). 
They are used for modelling the hypothesis • t«lJtIrds aiteri4 ~ is tIie f1tJlue of tIie 

IintJuistic ~ Zr as 9004 as Z~'. For expressing this hypothesis the 

possibililty relation can be used. Towards the claim 'Zr is as 9004 as Z~· the 
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change from a positive aUiblde to a negative attitude appears not abruptly 

but rather gradually when Zr should become lager and larger than Z~ . The 

threshold for accepting or rejecting the claim is formulated by indifference 
and preference thresholds which can be int.erpeted as a fuzzy number. For 

each value z9. < Zp + IS the membership degree towards the claim • Z~ is as 
1 1 I 

gooti as Z~ witIi. nspect tQ criteria ~ is totally accepted with value 1 and for 

z[ > Zf + PS the claim is totally unaccepted and gets the value O. The 

membership degree for the preference claim decreases from 1 to O. The 

membership function for the acception is supposed as preG:Zj xZj ~ [0.1) 

where pref is a fuzzy relation with (optj = max) : 

1 ~N¢I <ZP +IS)=1 
1 I 

pref.(ZP ,Z9)= 0 ~N¢I > Zp + PS)= 1 
'1 1 1 1 1 

decreasing else 

zr COnstanL 

Because of the exention principle is: 

J1 p (z)= sup min (zP(x).IS(y)} 
Zi +IS z=x+y 1 

~~N(z9<zP+1S)=infmax{I-J1 p (u). inf 1-~...,(] (z)} = 
1 1 u Zi + IS z ~ u ~' + IS 

1- sup min {J1 p (u). J1...,(] (z)} = 1-~p(z9 ~ zP + IS). 
z>u Z. +IS .[..'+IS 1 1 

- 1 1 

Analogous there is a veto- and irritation (VS. RS) threshold. They are 

usable towards the claim • z~ is fIIDrStT tIion z~ fIIitIi nspea tQ 19'. The 
I I 

membership function is supposed as ink0i:ZjxZj ~[O.l] where (qJj=max) 
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o J1N¢.I < zP + RS}= 1 
1 1 

ink<>j<Zf.z?)= 1 J1N<Z? > Zf + VS}= 1 
increasing else 

zr COnstanL 

The thresholds are independent of i and P and the increase of the degree is 
linear between the thresholds. A possiblity for a mathematical formulation 
of the increase is Zadeh's S-function (Giarrantano. J .• Riley. G.(1989)] or 
Hellendoorn's generalization [He11endoom. H.(I990)]. 

2.3.2 Sets of alternatives 

Now the scale values of the cntenons are used for estimating the 
alternatives of each criterion. The quality of preference of the fll'St step is 
used for constructing local relations of preference. The membership 
function is formulated towards the claim 'tlie ~ ~ is yrifuaDk to tIie 
altematitJe ~ 'llJitJi. rrspect to criterion kj. Based upon the preference function of 
the scales the preference situation of the alternatives will be defIned. The 

local preference struct..1.re is a fuzzy relation defIned as Pj =(P~) with 

P~ = pref (~j' Zqy. 'V p. q = 1 •... .m. j = 1 •... ,0. 

Analogous the local incompensation relation is given by a membership 
function towards the claim 'olternati1IC ~ is incompen.sattJ6fy 'UJOrSe tfum. ~ 'llJitJi. 
rrspu;t to criterion kj. 1ncompensatably means that a better value in one 
criterion cannot even out a worse value in another criterion for this 

alternative. The incompensation relation is defIned as I j = (I~? with 

I:x. = (inko J{~j' Zqy. 'V P. q = 1 •... .m. j = 1. •... ,11. 

2.3.3. Constructing the Concordance and discordance relation 

The local relation will be aggregated to a global relation where all 
information about the alternatives with respect to each criterion is 
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concenlI3led. The membership degree towards the claim '1Iiu:nuuiue ~ is as 
Booti as tJ!u:nuui:Jc ~ IIIit4 nspt.ct to IIfl aiuriDns' can be represented as 
concordance degree ~. There all local values can be added to the fuzzy 

n . 
. . Cpq = L WjpJ '" . 

relabon Cpq WIth j = 1 pq, p.q = l •... ,m. wJ weight of cntenon 

kj. ~wj~l. 't/ j. 
The aggregation of the non-concordance called discordance leads to the 
membership degree towards the claim '~ ~ is inamrpmsDti6fy fWrSt 

tIian aiurtuJtUJt ~ /111' eocft aiuriorl kj. The membership degree towards the 
claim '1Ifunuuiw ~ is Mt compensUfg fWrSt tIim ~ ~ is more 
interesting. This claim is equal to iJltmuJti:Te ~ is IIIit4 respect to ~ Mt 

~fy fWrSt an4 witIi respect to ~ Mt ~fy an4 _. an4 witIi 
resput to ~ Mt inconrptnsalIJ6fy fWrSt tIian ~~ By using the fuzzy NOT and 
AND operator the fuzzy incompensation relation (discordance relation) Dpq 
can be defmed as: 

n . w' 
Dpq = n (l-Ilxt J ..." " "< " 

j = 1 , p.q= 1, ... , m, WJ weight of cntenon kJ, ()$wJ_l,'i1 J. 

The preference relation can be formulated by combining the claim 
'af.ternatUJe ~ is as BOO' as ~ /111' eocft criuriDn' and 'altmultWe ~ is inumrptnsatibfy 
flJDI'Se tIian altmuuive ~/111' eacr.. cri.tt:riDn' as R = <Rpq) with Roo = CooDpq. By 
using well known methods like Electte [Roy, B.(l99f)f or homethee 
[Brans, J.P.; Mareschal, B.; Vincke. Ph.(l985)] the preference relation can 
be used for decision recommendation. 

3 Discussion 

The presented method is a new way for apply checking in life insurance. 
The method allows to keep the identity and intrinsic properties of all 
criterions while at the same time taking into account the uncertainty of the 
evaluations. The concept of fuzzy sets is a useful method for modelling 
these uncertainties. Because of the well use of approximate inference in 
business administration problems this kind of inference is used for 
prejudgements of an apply. It suggests that much of the uncertainty which is 
intrisic in risk analysis is rooted in the fuzziness of the information and 
estimation. For instance preferred customers could be defined by degrees of 
membership concering each criterion of apply checking. This fuzzy 
estimations are taken up by the outranking approach for ranking the 
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alternatives which can be evaluated for risk minimizing. Similar methods 
like Promethee are used in banking for checking credibility of customers. In 
insurance fuzzy concepts are not well known.Here imprecise statements 
have often transformed into 'all-or-nothing' rules. Fuzzy set theory can be 
used to provide a more flexible definition of insurableness and allows for 
some form compensation between the selected criteria. 
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